
U10M12004-OOP

Object Oriented
Programming

Chapter 8
Collections

Slides partially adapted from lecture
notes by Cay Horstmann

Dr. Helei Cui

16 May 2024

U10M12004-OOP

Questions

Dr. Helei Cui 2

• The data structures can make a BIG difference
when you try to implement methods in a natural
style or are concerned with performance.

1. Do you need to search quickly through thousands (or
even millions) of sorted items?

2. Do you need to rapidly insert and remove elements in
the middle of an ordered sequence?

3. Do you need to establish associations between keys
and values?

• Different from the Data Structures course, we will
skip the theory and just show you how to use the
collection classes in the standard library.

U10M12004-OOP

Contents

Dr. Helei Cui 3

• 8.1 Java Collections Framework

• 8.2 Concrete Collections

• 8.3 Maps

U10M12004-OOP

8.1 The Java Collections Framework

Dr. Helei Cui 4

• The initial release of Java supplied only a small set of
classes for the most useful data structures: Vector, Stack,
Hashtable, BitSet, and the Enumeration interface
that provides an abstract mechanism for visiting elements
in an arbitrary container.
• That was certainly a wise choice—it takes time and skill to come

up with a comprehensive collection class library.

• As of Java 1.2, the designers felt that the time had come to
roll out a full-fledged set of data structures.
• The library should be small and easy to learn.

U10M12004-OOP

8.1.1 Separating Collection Interfaces and Implementation

Dr. Helei Cui 5

• The Java collection framework separates interfaces and
implementations.
• A queue interface provides abstract specification:

public interface Queue<E> { // simplified form
 void add(E element);
 E remove();
 int size();
}

“first in, first out”

U10M12004-OOP

8.1.1 Separating Collection Interfaces and Implementation

Dr. Helei Cui 6

• A collection interface can have multiple implementing
classes that implement the Queue interface.

public class CircularArrayQueue<E> implements Queue<E>
public class LinkedListQueue<E> implements Queue<E>
 //not actual library classes

U10M12004-OOP

8.1.1 Separating Collection Interfaces and Implementation

Dr. Helei Cui 7

• Always use the interface type to hold the collection
reference after creation:

• If you want to use a different implementation, change your
program in the constructor call.

• A circular array is somewhat more efficient than a linked list.

• The circular array is a bounded collection—it has a finite capacity.

• If you don’t have an upper limit on the number of objects that your
program will collect, you may be better off with a linked list
implementation after all.

Queue<Customer> expressLane = new CircularArrayQueue<>(100);
expressLane.add(new Customer("Harry"));

Queue<Customer> expressLane = new LinkedListQueue<>();
expressLane.add(new Customer("Harry"));

U10M12004-OOP

8.1.2 The Collection Interface

Dr. Helei Cui 8

• Collection<E> has two fundamental methods:

• The add method adds an element to the collection and
returns true or false that indicates if the element added
changes the collection.

• The iterator method returns an object that implements
the Iterator interface. You can use the iterator object to
visit the elements in the collection one by one.

public interface Collection<E> {
 boolean add(E element);
 Iterator<E> iterator();
 . . .
}

U10M12004-OOP

8.1.3 Iterators

Dr. Helei Cui 9

• The Iterator interface has four methods:

• Get an iterator from a collection to visit all elements:

• More concisely as the “for each” loop:

public interface Iterator<E> {
 E next();
 boolean hasNext();
 void remove();
 default void forEachRemaining(Consumer<? super E> action);
}

Collection<String> c = . . .;
Iterator<String> iter = c.iterator();
while (iter.hasNext()) {
 String element = iter.next();
 // do something with element
}

for (String element : c) {
 // do something with element
}

U10M12004-OOP

8.1.3 Iterators

Dr. Helei Cui 10

• The “for each” loop works with any object that implements
the Iterable interface with a single abstract method:

• The Collection interface extends the Iterable interface.

• Or without any loop:

• The order in which the elements are visited depends on the
collection type.

• The only way to look up an element is to call next, and that lookup
advances the position.

iterator.forEachRemaining(element -> do something with element);

public interface Iterable<E> {
 Iterator<E> iterator();
 . . .
}

U10M12004-OOP

8.1.3 Iterators

Dr. Helei Cui 11

• Think of Java iterators as being between elements.
• When you call next, the iterator jumps over the next element, and

returns a reference to the element that it just passed.

U10M12004-OOP

8.1.3 Iterators

Dr. Helei Cui 12

• The remove method removes the element that was just
returned by next:

• Caution: Calling remove twice in a row without calling next in
between is an error.

Iterator<String> it = c.iterator();
it.next(); // skip over the first element
it.remove(); // now remove it

it.remove();
it.remove(); // ERROR

it.remove();
it.next();
it.remove(); // OK

U10M12004-OOP

8.1.4 Generic Utility Methods

Dr. Helei Cui 13

• The Collection and Iterator interfaces are generic.
• You can write utility methods that operate on any kind of

collection.

• The Collection interface declares quite a few useful
methods that all implementing classes must supply.

int size()
boolean isEmpty()
boolean contains(Object obj)
boolean containsAll(Collection<?> c)
boolean equals(Object other)
boolean addAll(Collection<? extends E> from)
boolean remove(Object obj)
boolean removeAll(Collection<?> c)
void clear()
boolean retainAll(Collection<?> c)
Object[] toArray()
<T> T[] toArray(T[] arrayToFill)

U10M12004-OOP

8.1.4 Generic Utility Methods

Dr. Helei Cui 14

• To make life easier for implementors, the library supplies a class
AbstractCollection.

• A concrete collection class can extend the AbstractCollection.

• The concrete collection class can supply an iterator method, but the
contains method has been taken care of by the AbstractCollection
superclass.

• However, if the subclass has a more efficient way of implementing contains,
it is free to do so.

public abstract class AbstractCollection<E>
implements Collection<E> {
. . .
public abstract Iterator<E> iterator();
public boolean contains(Object obj) {

for (E element : this) // calls iterator()
if (element.equals(obj))

return true;
return false;

}
}

U10M12004-OOP

8.1.5 Interfaces in Collections

Dr. Helei Cui 15

• The Java collections framework defines a number of interfaces for different
types of collections.

Two fundamental
interfaces for
collections:
Collection and Map

U10M12004-OOP

8.1.5 Interfaces in Collections

Dr. Helei Cui 16

• Collection holds elements,
Map holds key/value pairs.

• List: Ordered collection.

• Set: Unordered collection
without duplicates.

• SortedSet/SortedMap:
Traversed in sorted order.

• NavigableSet/NavigableMap:
Additional methods for sorted
sets/maps.

U10M12004-OOP

Contents

Dr. Helei Cui 17

• 8.1 Java Collections Framework

• 8.2 Concrete Collections

• 8.3 Maps

U10M12004-OOP

Collection Classes

Dr. Helei Cui 18

Classes in the
collections
framework

U10M12004-OOP

Concrete Collections

Dr. Helei Cui 19

ArrayList An indexed sequence that grows and shrinks dynamically

LinkedList
An ordered sequence that allows efficient insertion and
removal at any location

ArrayDeque A double-ended queue that is implemented as a circular array

HashSet An unordered collection that rejects duplicates

TreeSet A sorted set

EnumSet A set of enumerated type values

LinkedHashSet
A set that remembers the order in which elements were
inserted

PriorityQueue
A collection that allows efficient removal of the smallest
element

HashMap A data structure that stores key/value associations

TreeMap A map in which the keys are sorted

EnumMap A map in which the keys belong to an enumerated type

LinkedHashMap A map that remembers the order in which entries were added

WeakHashMap
A map with values that can be reclaimed by the garbage
collector if they are not used elsewhere

IdentityHashMap A map with keys that are compared by ==, not equals

U10M12004-OOP

8.2.1 Linked Lists

Dr. Helei Cui 20

• Two ordered collection implementations:
• array lists and linked lists.

• Array lists manage an array that can grow or shrink.

• Inserting and removing in the middle is slow:
• Because all array elements

beyond the removed one
must be moved toward the
beginning of the array.

Figure 9.6 Removing an element
from an array

U10M12004-OOP

8.2.1 Linked Lists

Dr. Helei Cui 21

• Linked list=chain of “links”:

• Easy to remove in the
middle:

Figure 9.7 A doubly linked list

Figure 9.8 Removing an element
from a linked list

U10M12004-OOP

8.2.1 Linked Lists

Dr. Helei Cui 22

• Use the class LinkedList to remove and add elements in
the linked list.

• The LinkedList.add method adds the object to the end of the list.

• Use iterators to add elements in the middle of a list.

• The subinterface ListIterator contains an add method:

var staff = new LinkedList<String>();
staff.add("Amy");
staff.add("Bob");
staff.add("Carl");
Iterator<String> iter = staff.iterator();
String first = iter.next(); // visit first element
String second = iter.next(); // visit second element
iter.remove(); // remove last visited element

interface ListIterator<E> extends Iterator<E>{
void add(E element); //do not return a boolean

}

U10M12004-OOP

8.2.1 Linked Lists

Dr. Helei Cui 23

• In addition, the ListIterator interface has two
methods for traversing a list backwards.

• The listIterator method of the LinkedList class returns an
iterator object that implements the ListIterator interface.

• The add method adds the new element before the iterator
position.

E previous()
boolean hasPrevious()

ListIterator<String> iter = staff.listIterator();

var staff = new LinkedList<String>();
staff.add("Amy");
staff.add("Bob");
staff.add("Carl");
ListIterator<String> iter = staff.listIterator();
iter.next(); // skip past first element
iter.add("Juliet");

U10M12004-OOP

8.2.1 Linked Lists

Dr. Helei Cui 24

• A set method replaces the last element, returned by a
call to next or previous, with a new element.

• Linked list iterators detect concurrent modifications:

• The list and all iterators keep a “modification count”.
• OK to have multiple readers and no writer.

• OK to have one writer and no reader.

ListIterator<String> iter = list.listIterator();
String oldValue = iter.next(); // returns first element
iter.set(newValue); // sets first element to newValue

List<String> list = . . .;
ListIterator<String> iter1 = list.listIterator();
ListIterator<String> iter2 = list.listIterator();
iter1.next();
iter1.remove();
iter2.next(); // throws ConcurrentModificationException

U10M12004-OOP

8.2.1 Linked Lists

Dr. Helei Cui 25

• Remember to use a ListIterator to traverse the
elements of the linked list in either direction and to add
and remove elements.

• The LinkedList class supplies a get method that lets
you access a particular element:

• The code is staggeringly inefficient.

LinkedList<String> list = . . .;
String obj = list.get(n);

for (int i = 0; i < list.size(); i++) {
 do something with list.get(i);}

The only reason to use linkedList is to minimize the
cost of insertion and removal in the middle of the list. If
you want random access into a collection, use an array
or ArrayList, not a linked list.

U10M12004-OOP

8.2.2 Array Lists

Dr. Helei Cui 26

• ArrayList is the other concrete implementation of the
List interface which encapsulates a dynamically
reallocated array of objects.
• No need to use iterators since you have efficient random access

with methods get and set.

• They are lists, so you may want to save references in List
variables:

• Moment of truth: You won't use linked lists much. Most
of the time, an array list is fine.

• Some methods give you a List value:

• It's a list, but you don't know which kind.

List<String> names = new ArrayList<>();

List<String> names = Arrays.asList("Peter", "Paul", "Mary");

U10M12004-OOP

8.2.3 Hash Sets

Dr. Helei Cui 27

• A well-known data structure for finding objects quickly is
the hash table.
• A hash table computes an integer, called the hash code, for each

object. A hash code is somehow derived from the instance fields
of an object.

• Hash table uses hash codes to group elements into buckets:

Table 9.2 Hash Codes Resulting
from the hashCode Method

Figure 9.10 A hash table

U10M12004-OOP

8.2.3 Hash Sets

Dr. Helei Cui 28

• Important notes:
• If a.equals(b), then a and b must have the same

hash code.

• Hit a bucket that is already filled - hash collision.

• Compare the new object with all objects in that bucket
to see if it is already present.

• If too many elements are inserted into a hash table, the
number of collisions increases, and retrieval
performance suffers.

• Hash tables can be used to implement several important
data structures: the set type.
• The hash set iterator visits all buckets in turn.

U10M12004-OOP

8.2.4 Tree Sets

Dr. Helei Cui 29

• Tree sets visit elements in sorted order.
• Every time an element is added to a tree, it is placed into

its proper sorting position.

• In practice, a bit slower than hash sets.
• But performance is guaranteed, whereas hash sets can

perform poorly when the hash function does not scramble
values well.

• Tree set needs total ordering - not always easy to find.
• In a total ordering, two elements compare identically only

when they are equal.

Use tree sets when your elements are comparable,
and you need traversal in sorted order.

U10M12004-OOP

8.2.5 Queues and Deques

Dr. Helei Cui 30

• A queue can add elements at
the tail and remove elements
from the head.

• A double-ended queue, or
deque, can add or remove
elements at the head and tail.
• Deque interface are

implemented by the
ArrayDeque and
LinkedList classes.

• Both of which provide deques
whose size grows as needed.

U10M12004-OOP

8.2.6 Priority Queues

Dr. Helei Cui 31

• A priority queue retrieves elements in sorted order
after they were inserted in arbitrary order.
• Makes use of an elegant and efficient data structure heap.

• A heap is a self-organizing binary tree in which the add and
remove operations cause the smallest element to gravitate
to the root, without wasting time on sorting all elements.

• It can either hold elements of a class that implements
the Comparable interface or a Comparator object
you supply in the constructor.

• A typical use is job scheduling.
• Each job has a priority. When removing, the “highest

priority” job is removed.

U10M12004-OOP

Contents

Dr. Helei Cui 32

• 8.1 Java Collections Framework

• 8.2 Concrete Collections

• 8.3 Maps

U10M12004-OOP

8.3.1 Basic Map Operations

Dr. Helei Cui 33

• A map stores key/value pairs.
• HashMap hashes the keys, TreeMap organizes them in sorted

order.

• Add an association to a map:

• Retrieve a value with a given key:

• The get method returns null if the key is absent. Better
approach:

var staff = new HashMap<String, Employee>();
var harry = new Employee("Harry Hacker");
staff.put("987-98-9996", harry);

var id = "987-98-9996";
Employee e = staff.get(id); // gets harry

Map<String, Integer> scores = . . .;
int score = scores.getOrDefault(id, 0);
// gets 0 if the id is not present

U10M12004-OOP

8.3.1 Basic Map Operations

Dr. Helei Cui 34

• Keys must be unique.
• The put returns the previous value associated

with its key parameter.
• The remove method removes an element with a

given key from the map.
• The size method returns the number of entries in

the map.
• Easiest way to iterate over a map:

scores.forEach((k, v) ->
 System.out.println("key=" + k + ", value=" + v));

U10M12004-OOP

8.3.2 Updating Map Entries

Dr. Helei Cui 35

• Updating a map entry is tricky because the first time is
special.

• Consider updating a word count:

• What if word wasn't present?

• Another approach is to first call the putIfAbsent method.

• The merge method simplifies this common operation.

• If word wasn’t present, put 1. Otherwise, put the sum of 1 and the
previous value.

counts.putIfAbsent(word, 0);
counts.put(word, counts.get(word) + 1);
 // now we know that get will succeed

counts.merge(word, 1, Integer::sum);

counts.put(word, counts.getOrDefault(word, 0) + 1);

counts.put(word, counts.get(word) + 1);

U10M12004-OOP

8.3.3 Map Views

Dr. Helei Cui 36

• In the Java collections framework, a map isn't a
collection.
• But can obtain views of the map - objects that

implement the Collection interface or one of its
subinterfaces.

• Three views:
• the set of keys,

• the collection of values (which is not a set), and

• the set of key/value pairs.

Set<K> keySet()
Collection<V> values()
Set<Map.Entry<K, V>> entrySet()

U10M12004-OOP

8.3.3 Map Views

Dr. Helei Cui 37

• To visit all keys, can use:

• If you want to look at both keys and values, you can avoid
value lookups by enumerating the entries.

for (Map.Entry<String, Employee> entry : staff.entrySet()) {
 String k = entry.getKey();
 Employee v = entry.getValue();
 // do something with k, v
}

Set<String> keys = map.keySet();
for (String key : keys) {
 // do something with key
}

U10M12004-OOP

8.3.3 Map Views

Dr. Helei Cui 38

• You can avoid the cumbersome Map.Entry by using a var
declaration.

• Or simply use the forEach method:

• Calling remove on the key set removes the key and
associated value from the map.

map.forEach((k, v) -> {
 // do something with k, v
});

for (var entry : map.entrySet()){
 // do something with entry.getKey(), entry.getValue()
}

U10M12004-OOP

8.3.4 Weak Hash Maps

Dr. Helei Cui 39

• The garbage collector traces live objects.
• As long as the map object is live, all buckets in it are live and won’t

be reclaimed.

• Thus, your program should take care to remove unused values
from long-lived maps.

• Or you can use a WeakHashMap instead which cooperates
with the garbage collector to remove key/value pairs when
the only reference to the key is the one from the hash table
entry.
• The WeakHashMap uses weak references to hold keys.

• A WeakReference object holds a reference to another object - in
our case, a hash table key.

• The operations of the WeakHashMap periodically check that
queue for newly arrived weak references.

U10M12004-OOP

8.3.5 Linked Hash Sets and Maps

Dr. Helei Cui 40

• The LinkedHashSet and LinkedHashMap classes
remember in which they were added.

• As entries are inserted into the table, they are joined in a
doubly linked list.

Figure 9.11
A linked hash table

U10M12004-OOP

8.3.5 Linked Hash Sets and Maps

Dr. Helei Cui 41

• A linked hash map can alternatively use access order, not
insertion order, to iterate through the map entries.

• To construct such a hash map, call

• Access order is useful for implementing a “least recently
used” discipline for a cache. Automate the process:

• Adding a new entry then causes the eldest entry to be
removed whenever your method returns true.

LinkedHashMap<K, V>(initialCapacity, loadFactor, true)

protected boolean removeEldestEntry(Map.Entry<K, V> eldest)

var cache = new LinkedHashMap<K, V>(128, 0.75F, true) {
 protected boolean removeEldestEntry(Map.Entry<K, V> eldest) {
 return size() > 100;
 }
};

U10M12004-OOP

8.3.6 Enumeration Sets and Maps

Dr. Helei Cui 42

• The EnumSet is an efficient set implementation with
elements that belong to an enumerated type.

• The EnumSet is internally implemented as a sequence of
bits.

• The EnumSet class has no public constructors and use a
static factory method to construct the set:

• An EnumMap is a map with keys that belong to an
enumerated type. Specify the key type in the constructor:

enum Weekday { MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY,
SATURDAY, SUNDAY}

EnumSet<Weekday> always = EnumSet.allOf(Weekday.class);
EnumSet<Weekday> never = EnumSet.noneOf(Weekday.class);
EnumSet<Weekday> workday = EnumSet.range(Weekday.MONDAY,

Weekday.FRIDAY);
EnumSet<Weekday> mwf = EnumSet.of(Weekday.MONDAY,

Weekday.WEDNESDAY, Weekday.FRIDAY);

var personInCharge = new EnumMap<Weekday, Employee>
(Weekday.class);

U10M12004-OOP

8.3.7 Identity Hash Maps

Dr. Helei Cui 43

• In IdentityHashMap, the hash values for the keys should
not be computed by the hashCode method but by the
System.identityHashCode method.

• For comparison of objects, the IdentityHashMap uses ==,
not equals.
• In other words, different key objects are considered distinct even if

they have equal contents.

• This class is useful for implementing object traversal
algorithms, such as object serialization, in which you want to
keep track of which objects have already been traversed.

U10M12004-OOP

Recap

Dr. Helei Cui 44

Main collection
classes

Duplicate
elements is
allowed?

Elements are
ordered?

Elements are
sorted?

The collection
is thread-safe?

ArrayList Yes Yes No No

LinkedList Yes Yes No No

Vector Yes Yes No Yes

HashSet No No No No

LinkedHashSet No Yes No No

TreeSet No Yes Yes No

HashMap No No No No

LinkedHashMap No Yes No No

Hashtable No No No Yes

TreeMap No Yes Yes No

https://www.codejava.net/java-core/collections/java-collections-framework-summary-table

	幻灯片 1: Object Oriented Programming Chapter 8 Collections
	幻灯片 2: Questions
	幻灯片 3: Contents
	幻灯片 4: 8.1 The Java Collections Framework
	幻灯片 5: 8.1.1 Separating Collection Interfaces and Implementation
	幻灯片 6: 8.1.1 Separating Collection Interfaces and Implementation
	幻灯片 7: 8.1.1 Separating Collection Interfaces and Implementation
	幻灯片 8: 8.1.2 The Collection Interface
	幻灯片 9: 8.1.3 Iterators
	幻灯片 10: 8.1.3 Iterators
	幻灯片 11: 8.1.3 Iterators
	幻灯片 12: 8.1.3 Iterators
	幻灯片 13: 8.1.4 Generic Utility Methods
	幻灯片 14: 8.1.4 Generic Utility Methods
	幻灯片 15: 8.1.5 Interfaces in Collections
	幻灯片 16: 8.1.5 Interfaces in Collections
	幻灯片 17: Contents
	幻灯片 18: Collection Classes
	幻灯片 19: Concrete Collections
	幻灯片 20: 8.2.1 Linked Lists
	幻灯片 21: 8.2.1 Linked Lists
	幻灯片 22: 8.2.1 Linked Lists
	幻灯片 23: 8.2.1 Linked Lists
	幻灯片 24: 8.2.1 Linked Lists
	幻灯片 25: 8.2.1 Linked Lists
	幻灯片 26: 8.2.2 Array Lists
	幻灯片 27: 8.2.3 Hash Sets
	幻灯片 28: 8.2.3 Hash Sets
	幻灯片 29: 8.2.4 Tree Sets
	幻灯片 30: 8.2.5 Queues and Deques
	幻灯片 31: 8.2.6 Priority Queues
	幻灯片 32: Contents
	幻灯片 33: 8.3.1 Basic Map Operations
	幻灯片 34: 8.3.1 Basic Map Operations
	幻灯片 35: 8.3.2 Updating Map Entries
	幻灯片 36: 8.3.3 Map Views
	幻灯片 37: 8.3.3 Map Views
	幻灯片 38: 8.3.3 Map Views
	幻灯片 39: 8.3.4 Weak Hash Maps
	幻灯片 40: 8.3.5 Linked Hash Sets and Maps
	幻灯片 41: 8.3.5 Linked Hash Sets and Maps
	幻灯片 42: 8.3.6 Enumeration Sets and Maps
	幻灯片 43: 8.3.7 Identity Hash Maps
	幻灯片 44: Recap

