
U10M12004-OOP

Object-Oriented
Programming

Chapter 4
Objects and Classes

Dr. Helei Cui

10 April 2023

Slides partially adapted from lecture
notes by Cay Horstmann

U10M12004-OOP

Contents

Dr. Helei Cui 2

• 4.1 Introduction to Object-Oriented Programming
• 4.2 Using Predefined Classes
• 4.3 Defining Your Own Classes
• 4.4 Static Fields and Methods
• 4.5 Method Parameters
• 4.6 Object Construction
• 4.7 Packages
• 4.8 JAR Files
• 4.9 Documentation Comments
• 4.10 Class Design Hints

U10M12004-OOP

Background
• 1970s: “Structured” or procedural

programming.
• Algorithms + Data Structures =

Programs
• Procedures operate on shared data.

• 1980s: Object-oriented
programming.
• Each object has data and methods.
• More appropriate for larger

problems.

• Java is thoroughly object-oriented.
• Everything other than a primitive

type value is an object.

Dr. Helei Cui 3

Figure 4.1 Procedural vs. OO programming

U10M12004-OOP

Object-oriented vs Procedural

Dr. Helei Cui 4

Paradigm Description Pros Cons Examples

Object-
oriented

Treats data fields as
objects manipulated
through predefined
methods only

1. Much easier to scale for
future needs and
development.

2. Good for larger more
complex applications.

3. More dynamic and fluid in
terms of the architecture
and overall design.

4. Maintainable.

1. Can easily become very
complicated in terms of
design and architecture.

2. Takes much longer to
develop initially.

3. More difficult to learn
than Procedural.

Java, C++,
Kotlin, Go,
Python, etc.

Procedural Derived from
structured
programming,
based on the
concept of modular
programming or the
procedure call

1. Quick to develop and
implement.

2. Easy to learn.
3. Simple architecture and

overall structure.
4. Good for quick and simple

applications.

1. Difficult to scale for future
needs.

2. Usually is very flat in
terms of design and
structure.

3. Not good for larger
applications that will likely
change over time.

4. Maintaining can be very
challenging.

C, C++, PHP,
Python, etc.

U10M12004-OOP

4.1.1 Classes

Dr. Helei Cui 5

• A class is the template from which objects are made.
• Describes object data and method behavior.
• Object = instance of class.

https://imagesvc.meredithcorp.io/v3/mm/image?url=https%3A%2F%2Fstatic.onecms.io%2Fwp-
content%2Fuploads%2Fsites%2F9%2F2020%2F12%2F03%2Fcookie-cutters-holidays-FT-BLOG1220.jpg

Think of classes as cookie cutters;
objects are the cookies themselves.

U10M12004-OOP

Encapsulation

Dr. Helei Cui 6

• Encapsulation is simply combining data and behavior in
one package and hiding the implementation details from
the users of the object.
• A.k.a., information hiding.
• Give an object its “black box” behavior, which is the key to reuse

and reliability.

The key to making encapsulation work is to have methods
never directly access instance fields in a class other than
their own.

U10M12004-OOP

4.1.2 Objects

Dr. Helei Cui 7

• Objects are instances of a class.
• Three key characteristics:

• Behavior - what can you do with this object?
• The behavior of an object is defined by the methods that you can call.

• State - how does the object react when you invoke those methods?
• Each object stores information about what it currently looks like.
• A change in the state of an object must be a consequence of method calls.

• Identity - how is the object distinguished from others that may have the same
behavior and state?
• Each object has a distinct identity, e.g., two orders that contain the identical items.
• The individual objects that are instances of a class ALWAYS differ in their identity

and USUALLY differ in their state.

• These key characteristics can influence each other.
• E.g., if an order is “shipped” or “paid,” it may reject a method call that

asks it to add or remove items.

U10M12004-OOP

4.1.3 Identifying Classes

Dr. Helei Cui 8

• To begin with designing an OO system:
• Identify your classes, then add methods to each class.

• Simple rule:
• Nouns ---> classes
• Verbs ---> methods

U10M12004-OOP

4.1.3 Identifying Classes

Dr. Helei Cui 9

When building your classes, experience can help you decide
which nouns and verbs are the important ones.

U10M12004-OOP

Quick question 1

Try to define a student class?
• Class name:
• Attributes:
• Methods:

Dr. Helei Cui 10

U10M12004-OOP

4.1.4 Relationships between Classes

Dr. Helei Cui 11

• Common relationships between classes:
• Dependence (“uses-a”)
• Aggregation (“has-a”)
• Inheritance (“is-a”)

U10M12004-OOP

Dependence

Dr. Helei Cui 12

• Dependency depicts how various things within a
system are dependent on each other.
• Also called “uses-a” relationship.
• The most obvious and also the most general.
• E.g., the Order class uses the Account class because Order

objects need to access Account objects to check for credit
status.

• A class depends on another class if its methods use or
manipulate objects of that class.

• You should try to minimize the number of classes that
depend on each other.
• In software engineering terminology, you want to minimize

the coupling between classes.

U10M12004-OOP

Aggregation

Dr. Helei Cui 13

• Aggregation is a collection of
different things, which
describes a part-whole or
part-of relationship
• Also called “has-a” relationship.
• Easy to understand as it is

concrete.
• E.g., an Order object contains
Item objects.

• Containment means that
objects of class A contain
objects of class B.

U10M12004-OOP

Aggregation vs Association

Dr. Helei Cui 14

Association Aggregation

Association relationship is represented using an
arrow.

Aggregation relationship is represented by a
straight line with an empty diamond at one end.

In UML, it can exist between two or more classes. It is a part of the association relationship.

It incorporates one-to-one, one-to-many, many-to-
one, and many-to-many association between the
classes.

It exhibits a kind of weak relationship.

It can associate one more objects together.
In an aggregation relationship, the associated
objects exist independently within the scope of
the system.

In this, objects are linked together. In this, the linked objects are independent of each
other.

It may or may not affect the other associated
element if one element is deleted.

Deleting one element in the aggregation
relationship does not affect other associated
elements.

Example: A tutor can associate with multiple
students, or one student can associate with
multiple teachers.

Example: A car needs a wheel for its proper
functioning, but it may not require the same
wheel. It may function with another wheel as well.

U10M12004-OOP

Aggregation vs Association

Dr. Helei Cui 15

• Some methodologists view the concept of
aggregation with disdain and prefer to use
a more general “association” relationship.
• From the point of view of modeling, that is

understandable.

• But for programmers, the “has-a”
relationship makes a lot of sense.

• We like to use aggregation for another
reason as well: The standard notation for
associations is less clear.

• For a more detailed comparison, please
refer to https://www.javatpoint.com/uml-
association-vs-aggregation-vs-composition.

https://www.javatpoint.com/uml-association-vs-aggregation-vs-composition
https://www.javatpoint.com/uml-association-vs-aggregation-vs-composition

U10M12004-OOP

Inheritance

Dr. Helei Cui 16

• Inheritance expresses a
relationship between a more
special and a more general
class.
• Also called “is-a” relationship.
• Expresses a relationship

between a more special and a
more general class.

• E.g., a RushOrder class inherits
from an Order class.

• In general, if class A extends
class B, class A inherits
methods from class B but has
more capabilities.

U10M12004-OOP

Violet UML Editor

Dr. Helei Cui 17

• Search “Violet UML” and try it by yourself.

U10M12004-OOP

Online UML tools

Dr. Helei Cui 18

• You can also try https://www.diagrams.net/

https://www.diagrams.net/

U10M12004-OOP

Contents

Dr. Helei Cui 19

• 4.1 Introduction to Object-Oriented Programming
• 4.2 Using Predefined Classes
• 4.3 Defining Your Own Classes
• 4.4 Static Fields and Methods
• 4.5 Method Parameters
• 4.6 Object Construction
• 4.7 Packages
• 4.8 JAR Files
• 4.9 Documentation Comments
• 4.10 Class Design Hints

U10M12004-OOP

Classes we have seen
• Math.sqrt()
• Math.round()
• BigInteger.valueOf()
• BigDecimal.valueOf()
• String.join()
• String.format()
• Arrays.copyOf()
• Arrays.sort()
• Arrays.deepToString()
• System.out.println()
• …

Dr. Helei Cui 20

We know how to use
them without needing
to know how they are
implemented. This is
encapsulation.

U10M12004-OOP

4.2.1 Objects and Object Variables

• To work with objects, you first construct them and specify
their initial state. Then you apply methods to the objects.
• A constructor is a special method for constructing and initializing

objects.
• Constructors always have the same name as the class name.

• For example, the Date class:
• To construct a Date object, combine the constructor with the new

operator, e.g., “new Date();”.
• The “new expression” constructs a new object and is initialized to

the current date and time.

Dr. Helei Cui 21

System.out.println(new Date()); // pass the object to a method

String s = new Date().toString(); // yield a string of the date

In this way, the constructed object can only be used once.

U10M12004-OOP

Object Variable

• If you want to keep using a constructed object, you could
store the object in a variable.

Dr. Helei Cui 22

Date birthday = new Date(); // “birthday” is the variable name

It shows the object variable
birthday that refers to the
newly constructed object.

String s = birthday.toString(); // Now, you can use its methods.

U10M12004-OOP

Object vs Object Variable

• The first line defines a Date object variable, but not yet
initialized (i.e., does not refer to an object).
• To initialize, two choices: 1) using new operator; 2) refer to

an existing object.

Dr. Helei Cui 23

Date deadline; // deadline doesn't refer to any object

String s = deadline.toString(); // not yet initialized

deadline = new Date();

deadline = birthday;

Now both variables refer
to the same object.

U10M12004-OOP

Reference

• An object variable doesn’t actually contain an object. It
only refers to an object.
• In Java, the value of any object variable is a reference to an object

that is stored elsewhere.
• The return value of the new operator is also a reference.
• You can also explicitly set an object variable to null to indicate that

it currently refers to no object.

Dr. Helei Cui 24

Date deadline = new Date();

deadline = null;

//. . .

if (deadline != null)

System.out.println(deadline);

U10M12004-OOP

• A Date is a point in time, measured in UTC.
• A LocalDate is a date (day, month, year) in a particular

location.
• Use factory methods to create instances:

• Some useful LocalDate methods:

Dr. Helei Cui 25

LocalDate rightNow = LocalDate.now();

LocalDate newYearEve = LocalDate.of(1999, 12, 31);

LocalDate aThousandDaysLater = newYearsEve.plusDays(1000);

Year = aThousandDaysLater.getYear(); //2002

Month = aThousandDaysLater.getMonthValue(); //09

Day = aThousandDaysLater.getDayOfMonth(); //26

4.2.2 The LocalDate Class of the Java Library

U10M12004-OOP

• A method is deprecated when a library designer realizes that the
method should have never been introduced in the first place.
• The library designers realized that it makes more sense to supply

separate classes to deal with calendars.
• When an earlier set of calendar classes was introduced in Java 1.1, the

above Date methods were tagged as deprecated.
• You can still use them but will get compiler warnings.

• It is better to stay away from using deprecated methods because
they may be removed in a future version of the library.

Dr. Helei Cui 26

Deprecated Methods

U10M12004-OOP

4.2.3 Mutator and Accessor Methods

Dr. Helei Cui 27

• Mutator methods will change the state of an object.
• Accessor methods access objects without modifying them.

GregorianCalendar someDay = new GregorianCalendar(1999, 11, 31);

someDay.add(Calendar.DAY_OF_MONTH, 1000); // Mutator method

year = someDay.get(Calendar.YEAR); // 2002

month = someDay.get(Calendar.MONTH) + 1; // 09

day = someDay.get(Calendar.DAY_OF_MONTH); // 26

What’s the difference between the GregorianCalendar.add method
and the LocalDate.plusDays method?

Accessor method

U10M12004-OOP

Practice 1

Dr. Helei Cui 28

• Write a Java program to display a calendar for the
current month. In addition, use an asterisk (*) to
mark the current day.

Mon Tue Wed Thu Fri Sat Sun

1

2 3 4 5 6 7 8

9 10 11 12 13 14 15

16 17 18 19 20 21 22

23 24 25 26* 27 28 29

30

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/LocalDate.html

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/time/LocalDate.html

U10M12004-OOP

Contents

Dr. Helei Cui 29

• 4.1 Introduction to Object-Oriented Programming
• 4.2 Using Predefined Classes
• 4.3 Defining Your Own Classes
• 4.4 Static Fields and Methods
• 4.5 Method Parameters
• 4.6 Object Construction
• 4.7 Packages
• 4.8 JAR Files
• 4.9 Documentation Comments
• 4.10 Class Design Hints

U10M12004-OOP

4.3.1 An Employee Class

Dr. Helei Cui 30

• The simplest form for a class definition in Java:

class ClassName {

field1

field2

...

constructor1

constructor2

. . .

method1

method2

. . .

}

U10M12004-OOP

Simplified Version

Dr. Helei Cui 31

class Employee {
// instance fields
private String name;
private double salary;
private LocalDate hireDay;

// constructor
public Employee(String n, double s, int year, int month, int day) {

name = n;
salary = s;
hireDay = LocalDate.of(year, month, day);

}

// methods
public String getName() {

return name;
}
// ... The completed program is shown in Listing 4.2.

}

U10M12004-OOP

Key Points in Listing 4.2

Dr. Helei Cui 32

• Construct an Employee array and fill it with three objects:

• Use the raiseSalary method to raise each employee’s salary
by 5%:

• Print out information about each employee, by calling the
accessor (“getter”) methods:
for (Employee e : staff)

System.out.println("name=" + e.getName()
+ ",salary=" + e.getSalary()
+ ",hireDay=" + e.getHireDay());

for (Employee e : staff)
e.raiseSalary(5);

Employee[] staff = new Employee[3];
staff[0] = new Employee("Carl Cracker", . . .);
staff[1] = new Employee("Harry Hacker", . . .);
staff[2] = new Employee("Tony Tester", . . .);

U10M12004-OOP

Key Points in Listing 4.2

Dr. Helei Cui 33

• The example program consists of
two classes:
• The Employee class;
• The EmployeeTest class with the

public access specifier, also contains
the main method.

• The name of the source file is
EmployeeTest.java for matching
the name of the public class.

• You can only have one public class in
a source file, but you can have any
number of nonpublic classes.

• When you compile this source code,
the compiler creates two class files
in the directory:
• EmployeeTest.class and
Employee.class.

• Start the program by calling java
EmployeeTest.

U10M12004-OOP

4.3.2 Use of Multiple Source Files

Dr. Helei Cui 34

• Many programmers prefer to put each class into its
own source file.
• Employee class ---> Employee.java
• EmployeeTest class ---> EmployeeTest.java

• You have two choices for compiling the program:
• You can invoke the Java compiler with a wildcard.

• You can simply type

• When the Java compiler sees the Employee class being
used inside EmployeeTest.java, it will look for a file
named Employee.class.

javac Employee*.java

javac EmployeeTest.java

U10M12004-OOP

4.3.3 Dissecting the Employee Class

Dr. Helei Cui 35

• The keyword public means that any method in any
class can call the method.

• The keyword private ensures that the only methods
that can access these instance fields are the methods
of the Employee class itself.

public Employee(String n, double s, int year, int month, int day)
public String getName()
public double getSalary()
public LocalDate getHireDay()
public void raiseSalary(double byPercent)

private String name; // reference to String object
private double salary;
private LocalDate hireDay; // reference to LocalDate object

U10M12004-OOP

• Constructor runs when you create objects of the Employee class:
• Have the same name as the class.
• Give the instance fields the initial state.

• Create an instance as follows:

Dr. Helei Cui 36

public Employee(String n, double s, int year, int month, int day) {
name = n;
salary = s;
hireDay = LocalDate.of(year, month, day);

}

new Employee("James Bond", 100000, 1950, 1, 1)

4.3.4 First Steps with Constructors

james.Employee("James Bond", 250000, 1950, 1, 1) // ERROR

A constructor can only be called in conjunction with the new
operator. You can’t apply a constructor to an existing object
to reset the instance fields.

U10M12004-OOP Dr. Helei Cui 37

Keep in Mind

• A constructor has the same name as the class.
• A class can have more than one constructor.
• A constructor can take zero, one, or more parameters.
• A constructor has no return value.
• A constructor is always called with the new operator.
• Do not introduce local variables with the same names as

the instance fields.

public Employee(String n, double s, . . .) {
String name = n; // ERROR
double salary = s; // ERROR
. . .

}

U10M12004-OOP

4.3.5 Declaring Local Variables with var

Dr. Helei Cui 38

• As of Java 10, you can declare local variables with the
var keyword instead of specifying their type.

• This is nice as the type name Employee is not
required to provide twice.
• But for numeric types, it’s better to use their types.
• It’s hard to see the difference between 0 and 0L.

Employee harry = new Employee("A Hacker", 50000, 1989, 10, 1);
var harry = new Employee("A Hacker", 50000, 1989, 10, 1); // It’s OK

The var keyword can only be used with local variables inside
methods. You must always declare the types of parameters
and fields.

U10M12004-OOP

4.3.6 Working with null References

Dr. Helei Cui 39

• Be very careful with null values.

• This is a serious error, similar to an “index out of bounds”
exception.
• If your program does not “catch” an exception, it is

terminated.
• Normally, programs don’t catch these kinds of exceptions

but rely on you not to cause them in the first place.

LocalDate birthday = null;
String s = birthday.toString(); // NullPointerException

You should be clear about which fields can be null, e.g., the
name or hireDay field cannot be null.

U10M12004-OOP

The “Permissive” Approach

Dr. Helei Cui 40

• To turn a null argument into an appropriate non-null value:

• As of Java 9, there is a convenience method:

if (n == null) {
name = "unknown";

} else {
name = n;

}

public Employee(String n, double s, int year, int month, int day) {
name = Objects.requireNonNullElse(n, "unknown");
. . .

}

U10M12004-OOP

The “Tough Love” Approach

Dr. Helei Cui 41

• To reject a null argument:

• If someone constructs an Employee object with a null
name, then a NullPointerException occurs.

• Two advantages:
• The exception report has a description of the problem.
• The exception report pinpoints the location of the

problem. Otherwise, a NullPointerException
would have occurred elsewhere, with no easy way of
tracing it back to the faulty constructor argument.

public Employee(String n, double s, int year, int month, int day) {
Objects.requireNonNull(n, "The name cannot be null");
name = n;
. . .

}

U10M12004-OOP

4.3.7 Implicit and Explicit Parameters
• Methods operate on objects and access their instance fields.

• Calling number007.raiseSalary(5) will execute:

• The method has two parameters:
• number007 ---> implicit parameter
• byPercent ---> explicit parameter

Dr. Helei Cui 42

public void raiseSalary(double byPercent) {
double raise = salary * byPercent / 100;
salary +=raise;

}

double raise = number007.salary * 5 /100;
number007.salary += raise;

The explicit parameters are explicitly listed in the method
declaration, e.g., double byPercent. The implicit parameter
does not appear in the method declaration.

U10M12004-OOP

Keyword this

• The keyword this can refer to the implicit parameter in
every method.

• This is a better choice as it clearly distinguishes between
instance fields and local variables.

Dr. Helei Cui 43

public void raiseSalary(double byPercent) {
double raise = this.salary * byPercent / 100;
this.salary += raise;

}

U10M12004-OOP

4.3.8 Benefits of Encapsulation

Dr. Helei Cui 44

• Note the private field and public method:

• Benefit 1: The field is “read-only”.
• Benefit 2: The internal implementation can be

changed without affecting any code other than the
methods of the class.

private String name; // instance field
public String getName() { // accessor method

return name;
}

private String firstName;
private String lastName;
public String getName() {

return firstName + " " + lastName;
}

U10M12004-OOP

Three Items

Dr. Helei Cui 45

• If you want to get and set
the value of an instance
field, you need to supply
three items:
• A private data field;
• A public field accessor

method; and
• A public field mutator

method.

U10M12004-OOP

4.3.9 Class-Based Access Privileges

Dr. Helei Cui 46

• A method can access the private data of all
objects of its class.

• A typical call is

• This method accesses the private fields of harry
and boss.
• A method of the Employee class is permitted to

access the private fields of any object of type
Employee.

class Employee {
. . .
public boolean equals(Employee other) {

return name.equals(other.name);
}

}

if (harry.equals(boss)) . . .

U10M12004-OOP

4.3.10 Private Methods

Dr. Helei Cui 47

• While most methods are public, private methods
can be useful in some cases.
• E.g., some helper methods should not be part of the

public interface and be best implemented as private.

• To implement a private method in Java, simply
change the public keyword to private.
• If the method is private, the designers of the class can

be assured that it is never used elsewhere, so they can
simply drop it.
• If a method is public, you cannot simply drop it because

other code might rely on it.

U10M12004-OOP

4.3.11 Final Instance Fields

Dr. Helei Cui 48

• A field defined as final must be initialized when the object
is constructed.
• The field may not be modified again.

• The final modifier is particularly useful for fields whose
type is primitive or an immutable class (e.g., String).
• For mutable class, the final keyword merely means that

the object reference stored in the object variable will never
again refer to a different object.
• But the object can be mutated!

private final String name;

private final StringBuilder evaluations; // might be confusing
...
evaluations = new Stringbuilder(); // initialized in the constructor
...
evaluations.append("Gold star!\n"); // the object can be mutated

U10M12004-OOP

Contents

Dr. Helei Cui 49

• 4.1 Introduction to Object-Oriented Programming
• 4.2 Using Predefined Classes
• 4.3 Defining Your Own Classes
• 4.4 Static Fields and Methods
• 4.5 Method Parameters
• 4.6 Object Construction
• 4.7 Packages
• 4.8 JAR Files
• 4.9 Documentation Comments
• 4.10 Class Design Hints

U10M12004-OOP

4.4.1 Static Fields

Dr. Helei Cui 50

• The static fields are associated with the class,
rather than with any object.
• Every instance of the class shares a class variable, which

is in one fixed location in memory.

• Even if there are no Employee objects, the static field
nextId is present.
• It belongs to the class, not to any individual object.

class Employee {
private static int nextId = 1; // nextId is shared among all instances
private int id; // every instance has its own id field
. . .

}

U10M12004-OOP

4.4.1 Static Fields

Dr. Helei Cui 51

• You can use it to assign a unique id for each
Employee object.

• Suppose you set the employee identification number for harry:

public void setId() {
id = nextId;
nextId++;

}

harry.setId(); // harry.id = Employee.nextId; Employee.nextId++;

Can you use a static field to count the number of Employee objects?

U10M12004-OOP

4.4.2 Static Constants

Dr. Helei Cui 52

• A “static+final” field is a class shared constant:

• If the keyword static had been omitted, then PI would have
been an instance field of the Math class.

• Since out has been declared as final, you cannot reassign
another print stream to it:

public class Math {
public static final double PI = 3.14159265358979323846;

}

public class System {
public static final PrintStream out = . . .;

} // another static constant in the System class

System.out = new PrintStream(. . .); // ERROR--out is final

U10M12004-OOP

4.4.3 Static Methods

Dr. Helei Cui 53

• Static methods do not operate on objects.
• E.g., Math.pow(a, b) computes 𝑎!without using a Math object.
• It has no implicit parameter, i.e., no this.

• A static method can access a static field:

• To call this method, you supply the class name:

public static int getNextId() {
return nextId; // returns static field

}

int n = Employee.getNextId();

The main method is static because no objects have been
constructed when the program started.

U10M12004-OOP

4.4.3 Static Methods

Dr. Helei Cui 54

• Use static methods in two situations:
1. When a method doesn’t need to access the object

state because all needed parameters are supplied as
explicit parameters, e.g., Math.pow().

2. When a method only needs to access static fields of
the class, e.g., Employee.getNextId().

U10M12004-OOP

4.4.4 Factory Methods

Dr. Helei Cui 55

• Classes such as LocalDate and NumberFormat use
static factory methods that construct objects.

• Why doesn’t the NumberFormat class use constructors
instead?
• You can’t give names to constructors.

• The constructor's name is always the same as the class name.
• But we want two different names to get the currency instance

and the percent instance.
• When you use a constructor, you can’t vary the type of the

constructed object.
• The factory methods return objects of the class DecimalFormat,

a subclass that inherits from NumberFormat.

NumberFormat currencyFormatter = NumberFormat.getCurrencyInstance();
NumberFormat percentFormatter = NumberFormat.getPercentInstance();
double x = 0.1;
System.out.println(currencyFormatter.format(x)); // prints $0.10
System.out.println(percentFormatter.format(x)); // prints 10%

U10M12004-OOP

4.4.5 The main Method

Dr. Helei Cui 56

• The main method is a static method.
• It does not operate on any objects.

• When a program starts, there aren’t any objects yet.
• The static main method executes and constructs the

objects that the program needs.

public class Application {
public static void main(String[] args) {

// construct objects here
. . .

}
}

U10M12004-OOP

4.4.5 The main Method

Dr. Helei Cui 57

• Every class can have a main method. That is a handy
trick for unit testing of classes.
• If you want to test the Employee class in isolation, simply

execute java Employee.
• If the Employee class is a part of a larger application, you

start the application with java Application, and the main
method of the Employee class is never executed.

class Employee {
public Employee(String n, double s, int year, int month, int day) {

name = n;
salary = s;
hireDay = LocalDate.of(year, month, day);

}
public static void main(String[] args) { // unit test

var e = new Employee("Romeo", 50000, 2003, 3, 31);
e.raiseSalary(10);
System.out.println(e.getName() + " " + e.getSalary());

}
}

U10M12004-OOP

Contents

Dr. Helei Cui 58

• 4.1 Introduction to Object-Oriented Programming
• 4.2 Using Predefined Classes
• 4.3 Defining Your Own Classes
• 4.4 Static Fields and Methods
• 4.5 Method Parameters
• 4.6 Object Construction
• 4.7 Packages
• 4.8 JAR Files
• 4.9 Documentation Comments
• 4.10 Class Design Hints

U10M12004-OOP

Call by Value & Call by Reference

Dr. Helei Cui 59

• Call by value: the method gets just the value that the caller
provides.
• Call by reference: the method gets the location of the

variable that the caller provides.
• A method can modify the value stored in a variable passed

by reference but not in one passed by value.
• Java always uses call by value.

• The method gets a copy of all parameter values.
• In particular, the method cannot modify the contents of any

parameter variables passed to it.

double percent = 10;
harry.raiseSalary(percent); // the value of percent is still 10

U10M12004-OOP

An Example

Dr. Helei Cui 60

• The percent is not changed:
1. x is initialized with a copy of the

value of percent (that is, 10).
2. x is tripled - it is now 30. But

percent is still 10.
3. Finally, the parameter variable x is

no longer in use.

public static void tripleValue(double x) {
x = 3 * x;

}

double percent = 10;
tripleValue(percent); // still doesn’t work

Figure 4.6 Modifying a numeric
parameter has no lasting effect

It is impossible for a method to
change a primitive type parameter.

U10M12004-OOP

Object References

Dr. Helei Cui 61

1. x is initialized with a copy of the
value of harry - that is, an
object reference.

2. The raiseSalary method is
applied to that object reference.
The Employee object to which
both x and harry refer gets its
salary raised by 200 percent.

3. The method ends, and the
parameter variable x is no longer
in use. Of course, the object
variable harry continues to
refer to the object whose salary
was tripled.

public static void tripleSalary(Employee x) {
x.raiseSalary(200);

}

harry = new Employee(. . .);
tripleSalary(harry); // works

Figure 4.7 Modifying an object parameter
has a lasting effect.

U10M12004-OOP

Quick question 2

Does Java use call-by-reference for objects?
A. True
B. False

Dr. Helei Cui 62

U10M12004-OOP

Object References are Passed by Value
• A method tries to swap two Employee

objects:

• If Java used call by reference for objects,
this method would work:

1. The x and y parameters of the swap
method are initialized with copies of these
references.

2. The method then proceeds to swap these
copies.

3. When the method ends, x and y are
abandoned.

Dr. Helei Cui 63

public static void swap(Employee x,
Employee y) {

Employee temp = x;
x = y;
y = temp;

}

var a = new Employee("Alice", . . .);
var b = new Employee("Bob", . . .);
swap(alice, bob);

Figure 4.8 Swapping object parameters
has no lasting effect.

U10M12004-OOP

A Short Summary

Dr. Helei Cui 64

• A method cannot modify a parameter of a primitive
type (that is, numbers or boolean values).
• A method can change the state of an object

parameter.
• A method cannot make an object parameter refer

to a new object.

U10M12004-OOP

Contents

Dr. Helei Cui 65

• 4.1 Introduction to Object-Oriented Programming
• 4.2 Using Predefined Classes
• 4.3 Defining Your Own Classes
• 4.4 Static Fields and Methods
• 4.5 Method Parameters
• 4.6 Object Construction
• 4.7 Packages
• 4.8 JAR Files
• 4.9 Documentation Comments
• 4.10 Class Design Hints

U10M12004-OOP

4.6.1 Overloading

Dr. Helei Cui 66

• Some classes have more than one constructors.

• Overloading allows different methods to have the
same name, but different parameters.
• Can differ by the number of input parameters or type of

input parameters or both.
• Overloading is related to compile-time (or static)

polymorphism.
• Java allows you to overload any method - not just

constructor methods.

var messages = new StringBuilder();

var todoList = new StringBuilder("To do:\n"); // with initial string

U10M12004-OOP

Method Signature

Dr. Helei Cui 67

• To completely describe a method, you need to specify its
name together with its parameter types, called the
signature of the method.
• E.g., the String class has four public methods called indexOf.

They have signatures:
• indexOf(int)
• indexOf(int, int)
• indexOf(String)
• indexOf(String, int)

The return type is not part of the method signature. That
means, you can’t have two methods with the same name
and parameter type but different return types.

U10M12004-OOP

4.6.2 Default Field Initialization

Dr. Helei Cui 68

• If you don’t set a field explicitly in a constructor, it is
automatically set to a default value:
• numbers ---> 0
• boolean values---> false
• object reference ---> null

• It is a poor programming practice to rely on the
defaults.
• E.g., suppose you don’t initialize some of the fields in a

constructor of the Employee class. By default, the
salary would be initialized with 0 and the name and
hireDay fields would be initialized with null.

LocalDate h = harry.getHireDay();

int year = h.getYear(); //throws exception if h is null

U10M12004-OOP

4.6.3 The Constructor with No Arguments

Dr. Helei Cui 69

• A constructor with no arguments is allowed.
• It creates an object with its field set to default.
• If you write a class with no constructors whatsoever,

then a no-argument constructor is provided for you.
• If a class supplies at least one constructor but does not

supply a no-argument constructor, it is illegal to
construct objects without supplying arguments.

public Employee() {

name = "";

salary = 0;

hireDay = LocalDate.now();

}

You get a free no-argument constructor only when your class
has no other constructors.

U10M12004-OOP

4.6.4 Explicit Field Initialization

Dr. Helei Cui 70

• Regardless of the constructor call, every instance
field is better to set to something meaningful.
• Assign a value to any field in the class definition;

• Initialize a field by a method call.

class Employee() {

private String name = ""; // carried out before the constructor executes

...

}

class Employee() {
private static int nextId;
private int id = assignId(); // initialized with a method call
. . .
private static int assignId() {

int r = nextId;
nextId++;
return r;

}
. . .

}

U10M12004-OOP

4.6.5 Parameter Names

Dr. Helei Cui 71

1. Use single-letter parameter names:

2. Prefix each parameter with an “a”:

3. Shadow instance fields with the same name:

public Employee(String n, double s) {
name = n;
salary = s;

} // You need to read the code to tell what the n and s parameters mean.

public Employee(String name, double salary) {
this.name = name;
this.salary = salary;

}

public Employee(String aName, double aSalary) {
name = aName;
salary = aSalary;

}

U10M12004-OOP

4.6.6 Calling Another Constructor

Dr. Helei Cui 72

• The first statement of a constructor has the form
this(. . .), then the constructor calls another
constructor of the same class.
• E.g., when you call new Employee(60000), the
Employee(double) constructor calls the
Employee(String, double) constructor.

public Employee(double s) {

this("Employee #" + nextId, s); // calls Employee(String, double)

nextId++;

}

Using the this keyword in this manner is useful - you only
need to write common construction code once.

U10M12004-OOP

4.6.7 Initialization Blocks
• Three ways to initialize a data field:
• By setting a value in a constructor;
• By assigning a value in the declaration;
• By using initialization blocks;

• Class declarations can contain arbitrary blocks of code.
• These blocks are executed whenever an object of that class is

constructed.

Dr. Helei Cui 73

class Employee {
private static int nextId;
private int id;
private String name;
private double salary;
// initialization block, runs first before the body of the constructor
{

id = nextId;
nextId++;

}
public Employee(String n, double s) {

name = n;
salary = s;

}
}

U10M12004-OOP

Initialization Blocks is not Common
• Using initialization blocks is never necessary and is

not common.
• It is usually more straightforward to place the

initialization code inside a constructor.

• It is legal to set fields in initialization blocks even if
they are only defined later in the class.

• However, to avoid circular definitions, it is not legal
to read from fields that are only initialized later.

Dr. Helei Cui 74

U10M12004-OOP

What happens when a constructor is called?

Dr. Helei Cui 75

1. If the first line of the constructor calls a second
constructor, then the second constructor
executes with the provided arguments.

2. Otherwise,
a. All data fields are initialized to their default values (0,

false, or null).
b. All field initializers and initialization blocks are

executed, in the order in which they occur in the class
declaration.

3. The body of constructor is executed.

U10M12004-OOP

Initialize the Static Fields

Dr. Helei Cui 76

• To initialize a static field, two choices:
1. Supply an initial value:

2. Use a static initialization block:

private static int nextId = 1;

//static initialization block

static

{

var generator = new Random();

nextId = generator.nextInt(10000);

}

Static initialization occurs when the class is first loaded.

U10M12004-OOP

4.6.8 Object Destruction and the finalize Method

Dr. Helei Cui 77

• Some OOP languages, notably C++, have explicit
destructor methods for any cleanup code that may
be needed when an object is no longer used.
• The most common activity in a destructor is reclaiming

the memory set aside for objects.

• Java does not support destructors as it does
automatic garbage collection.
• Manual memory reclamation is not needed.
• Some objects utilize a resource other than memory, such

as a file. Remember to supply a close method.

U10M12004-OOP

Contents

Dr. Helei Cui 78

• 4.1 Introduction to Object-Oriented Programming
• 4.2 Using Predefined Classes
• 4.3 Defining Your Own Classes
• 4.4 Static Fields and Methods
• 4.5 Method Parameters
• 4.6 Object Construction
• 4.7 Packages
• 4.8 JAR Files
• 4.9 Documentation Comments
• 4.10 Class Design Hints

U10M12004-OOP

4.7 Packages

Dr. Helei Cui 79

• A java package is a group of similar
types of classes, interfaces and
sub-packages.
• Can be categorized in two form:

built-in package and user-defined
package.

• There are many built-in packages,
lang, util, awt, etc.

• Advantages:
1. Java package is used to categorize

the classes and interfaces so that
they can be easily maintained.

2. Java package provides access
protection.

3. Java package removes naming
collision.

https://static.javatpoint.com/images/package.JPG

U10M12004-OOP

4.7.1 Package Names

Dr. Helei Cui 80

• The main reason for using packages is to guarantee
the uniqueness of class names.
• Two classes with the same name can be put in different

packages, e.g., java.util.Date ≠ java.sql.Date.

• To absolutely guarantee a unique package name,
use an Internet domain name written in reverse.
• Subpackages can be used for different projects.
• E.g., com.horstmann.corejava.Employee.

From the point of view of the compiler, there is absolutely
no relationship between nested packages. For example, the
packages java.util and java.util.jar have nothing to do with
each other.

U10M12004-OOP

4.7.2 Class Importation

Dr. Helei Cui 81

• A class can use all classes from its own package and all
public classes from other packages.
• To access the public classes, you have two methods:

• Use the fully qualified name:

• Use the import statement:
• You can import all classes in a package:

• You can import a specific class inside a package:

java.time.LocalDate today = java.time.LocalDate.now();

import java.time.*;
...
LocalDate today = LocalDate.now(); // no need to provide package prefix

import java.time.LocalDate;

Importing classes explicitly can help readers know exactly
which classes you use.

U10M12004-OOP

A Potential Error

Dr. Helei Cui 82

• The compiler cannot figure out which Date class you want
as both the packages have a Date class.
• To solve this, simply adding a specific import statement:

• What if you really need both Date classes?
• Use the full package name with every class name.

import java.util.*;
import java.sql.*;
. . .
Date today; // Error - java.util.Date or java.sql.Date?

import java.util.*;
import java.sql.*;
import java.util.Date;

var deadline = new java.util.Date();
var today = new java.sql.Date(. . .);

U10M12004-OOP

4.7.3 Static Imports

Dr. Helei Cui 83

• You can also import static methods and fields:

• Now you can refer to System.out and System.exit
without the class name:

• You can import a specific method or field:

• Not that clear for System.out.
• Better for mathematical functions:

import static java.lang.System.*;

out.println("Goodbye, World!"); // i.e., System.out
exit(0); // i.e., System.exit

import static java.lang.System.out;

import static java.lang.Math.*;
. . .
r = sqrt(pow(x, 2) + pow(y, 2));

U10M12004-OOP

4.7.4 Addition of a Class into a Package

Dr. Helei Cui 84

• To place classes inside a package, put the name of
the package at the top of your source file:

• Place the source file into a subdirectory that
matches the package name.
• E.g., all source files in the com.horstmann.corejava

package should be in a subdirectory.

package com.horstmann.corejava;
public class Employee {

. . .
}

U10M12004-OOP

4.7.5 Package Access

Dr. Helei Cui 85

• Access modifiers:
• public - can be used by any class;
• private - can be used only by the class that defines them;

• If you don’t specify either public or private, the feature (that is, the
class, method, or variable) can be accessed by all methods in the
same package.
• For classes, this is a reasonable default.
• For variables, this could be dangerous!

• In Java ≤ 1.1, I could add my own class like this:

public class Window extends Container {
String warningString;
. . .

}

package java.awt;
. . .
Window.warningString = "Trust me!";

From Java 1.2, the class loader explicitly disallows loading of
user-defined classes whose package name starts with "java.".

U10M12004-OOP

4.7.6 The Class Path

Dr. Helei Cui 86

• The class path is the collection of all locations that
can contain class files.
• A JAR file contains multiple class files and

subdirectories in a compressed format.
• ZIP format

• Directories are base directories, containing package
directories (such as com/horstmann/corejava).
• Class path elements are separated by : (Unix) or ;

(Windows).
• Can include current directory as .
• Starting with Java 6, you can specify a wildcard for a JAR

file directory, e.g., c:\archives*

U10M12004-OOP

4.7.7 Setting the Class Path

Dr. Helei Cui 87

• Pass to javac or java with –classpath option:

• Or set CLASSPATH environment variable:

• With the Windows shell, use

java –classpath
/home/user/classdir: . :/home/user/archives/archive.jar MyProg

export
CLASSPATH=/home/user/classdir: . :/home/user/archives/archive.jar

java -classpath c:\classdir;.;c:\archives\archive.jar MyProg

set CLASSPATH=c:\classdir;.;c:\archives\archive.jar

It might be a bad idea to set the CLASSPATH environment
variable permanently.

U10M12004-OOP

Contents

Dr. Helei Cui 88

• 4.1 Introduction to Object-Oriented Programming
• 4.2 Using Predefined Classes
• 4.3 Defining Your Own Classes
• 4.4 Static Fields and Methods
• 4.5 Method Parameters
• 4.6 Object Construction
• 4.7 Packages
• 4.8 JAR Files
• 4.9 Documentation Comments
• 4.10 Class Design Hints

U10M12004-OOP

4.8.1 Creating JAR files

Dr. Helei Cui 89

• A Java Archive (JAR) file can contain both class files and
other file types (e.g., images).
• Use the jar tool to make JAR files.

• In the default JDK installation, it’s in the jdk/bin directory.
• The most common command to make a new JAR file, i.e.,

jar cvf jarFileName file1 file2 . . .

• c - Creates a new or empty archive and adds files to it.
• v - Generates verbose output.
• f - Specifies the JAR file name as the second command-line

argument.
• The jar command has the following format:

• Please refer to Table 4.2 to see all the options for the jar
program.

jar cvf CalculatorClasses.jar *.class icon.gif

jar options file1 file2 . . .

U10M12004-OOP

4.8.2 The Manifest

Dr. Helei Cui 90

• Each JAR file contains a manifest file (MANIFEST.MF)
that describes special features of the archive.

• To edit the manifest, place the lines that you want
to add to the manifest into a text file.

• To update the manifest of an existing JAR file, place
the additions into a text file.

jar cfm jarFileName manifestFileName . . .

jar ufm MyArchive.jar manifest-additions.mf

Manifest-Version: 1.0
lines describing this archive

Name: Woozle.class
lines describing this file
Name: com/mycompany/mypkg/
lines describing this package

jar cfm MyArchive.jar manifest.mf com/mycompany/mypkg/*.class

U10M12004-OOP

4.8.3 Executable JAR Files

Dr. Helei Cui 91

• Use the e option of the jar command to specify the entry
point of your program.

• Alternatively, specify the main class of your program in
the manifest, by adding the following statement:

• Users can simply start the program as:

• On Windows, the Java runtime installer creates a file association
for the “.jar” extension that launches the file with the javaw –
jar command.

• On Mac OS X, the operating system recognizes the “.jar” file
extension and executes the Java program when you double-click
a JAR file.

java -jar MyProgram.jar

Main-Class: com.mycompany.mypkg.MainAppClass

jar cvfe MyProgram.jar com.mycompany.mypkg.MainAppClass files to add

U10M12004-OOP

4.8.4 Multi-Release JAR Files

Dr. Helei Cui 92

• Java 9 introduces multi-release JARs that can contain
class files for different Java releases.
• To add versioned class files, use the --release flag:

• To build a multi-release JAR file from scratch, use the -C
option and switch to a different class file directory for
each version:

• When compiling for different releases, use the --release
flag and the -d flag to specify the output directory:

• The main purpose of multi-release JARs is to enable a
particular version of your program or library to work
with multiple JDK releases.

jar uf MyProgram.jar --release 9 Application.class

jar cf MyProgram.jar -C bin/8 . --release 9 –C bin/9Application.class

javac -d bin/8 --release 8 . . .

U10M12004-OOP

4.8.5 A Note about Command-Line Options

Dr. Helei Cui 93

• Starting with Java 9, multiletter option names are
preceded by double dashes, with single-letter
shortcuts for common options.

• Single-letter options without arguments can be
grouped together:

• If you want to be thoroughly modern, you can
safely use the long options of the jar command:

• Single-letter options also work if you don’t group
them:

ls --human-readable ls -h

jar -cvf MyProgram.jar -e mypackage.MyProgram */*.class

jar --create --verbose --file jarFileName file1 file2 . . .

jar -c -v -f jarFileName file1 file2 . . .

U10M12004-OOP

Contents

Dr. Helei Cui 94

• 4.1 Introduction to Object-Oriented Programming
• 4.2 Using Predefined Classes
• 4.3 Defining Your Own Classes
• 4.4 Static Fields and Methods
• 4.5 Method Parameters
• 4.6 Object Construction
• 4.7 Packages
• 4.8 JAR Files
• 4.9 Documentation Comments
• 4.10 Class Design Hints

U10M12004-OOP

4.9.1 Comment Insertion

Dr. Helei Cui 95

• The Javadoc extracts information for the following items:
• Modules
• Packages
• Public classes and interfaces
• Public and protected fields
• Public and protected constructors and methods

• Each comment is placed immediately above the features it
describes.
• A comment starts with a /** and ends with a */.

• Each /** . . . */ documentation comment contains
free-form text followed by tags.
• A tag starts with an @, such as @since or @param.
• In the free-form text, you use HTML modifiers such as . . .
 for strong emphasis, to include an
image, etc.

• If you want to type code without worrying about escaping <
characters inside the code, try to use {@code . . . }.

U10M12004-OOP

4.9.2 Class Comments

Dr. Helei Cui 96

• The class comment must be placed after any import
statements, directly before the class definition.
• Here is an example of a class comment:

• There is no need to add an * in front of every line. But your IDE may
supply the asterisks automatically.

/**
* A {@code Card} object represents a playing card, such as "Queen of
* Hearts". A card has a suit (Diamond, Heart, Spade or Club) and a
* value (1 = Ace, 2 . . . 10, 11 = Jack, 12 = Queen, 13 = King)
*/

public class Card {
. . .

}

/**
A {@code Card} object represents a playing card, such as "Queen of
Hearts". A card has a suit (Diamond, Heart, Spade or Club) and a
value (1 = Ace, 2 . . . 10, 11 = Jack, 12 = Queen, 13 = King)

*/

U10M12004-OOP

4.9.3 Method Comments

Dr. Helei Cui 97

• Each method comment must immediately precede
the method that it describes:
• @param variable description
• @return description
• @throws class description

/**
* Raises the salary of an employee.
* @param byPercent the percentage by which to raise the salary
* @return the amount of the raise
*/
public double raiseSalary(double byPercent) {
double raise = salary * byPercent / 100;
salary += raise;
return raise;

}

U10M12004-OOP

4.9.4 Field Comments

Dr. Helei Cui 98

• You only need to document public fields.
• Generally, it means static constants.

/**

* The "Hearts" card suit

*/

public static final int HEARTS = 1;

U10M12004-OOP

4.9.5 General Comments

Dr. Helei Cui 99

• @since text
• the text can be any description of the version that introduced

this feature, e.g., @since 1.7.1.
• @author name

• this makes an author entry. You can have multiple @author
tags, one for each author.

• @version text
• the text can be any description of the current version.

• @see reference
• adds a hyperlink in the “see also” section. It can be used with

both classes and methods. The reference can be one of the
following:
• package.class#feature label
• label
• “text”

U10M12004-OOP

4.9.6 Package Comments

Dr. Helei Cui 100

• To generate package comments, you need to add a
separate file in each package directory. You can
have two choices:

1. Supply a Java file named package-info.java. The file
must contain an initial Javadoc comment, delimited
with /** and */, followed by a package statement. It
should contain no further code or comments.

2. Supply an HTML file named package.html. All text
between the tags <body>. . .</body> is extracted.

U10M12004-OOP

4.9.7 Comment Extraction

Dr. Helei Cui 101

1. Change to the directory that contains the source files you want to
document.
1. If you have nested packages to document, such as

com.horstmann.corejava, you must be working in the directory that
contains the subdirectory com. (This is the directory that contains the
overview.html file, if you supplied one.)

2. Run the command javadoc -d docDirectory nameOfPackage
for a single package or run javadoc -d docDirectory
nameOfPackage1 nameOfPackage2 ... to document multiple
packages.
1. If your files are in the unnamed package, run instead javadoc -d

docDirectory *.java

U10M12004-OOP

Contents

Dr. Helei Cui 102

• 4.1 Introduction to Object-Oriented Programming
• 4.2 Using Predefined Classes
• 4.3 Defining Your Own Classes
• 4.4 Static Fields and Methods
• 4.5 Method Parameters
• 4.6 Object Construction
• 4.7 Packages
• 4.8 JAR Files
• 4.9 Documentation Comments
• 4.10 Class Design Hints

U10M12004-OOP

Class Design Hints - 1

Dr. Helei Cui 103

• Always keep data private.
• This is first and foremost; doing anything else violates

encapsulation.
• You may need to write an accessor or mutator method

occasionally, but you are still better off keeping the
instance fields private.
• Bitter experience shows that the data representation

may change, but how this data are used will change
much less frequently.

When data are kept private, changes in their representation
will not affect the users of the class, and bugs are easier to
detect.

U10M12004-OOP

Class Design Hints - 2

Dr. Helei Cui 104

• Always initialize data.
• Java won’t initialize local variables for you, but it will

initialize instance fields of objects.
• Don’t rely on the defaults, but initialize all variables

explicitly, either by supplying a default or by setting
defaults in all constructors.

U10M12004-OOP

Class Design Hints - 3

Dr. Helei Cui 105

• Don’t use too many basic types in a class.
• The idea is to replace multiple related uses of basic

types with other classes.
• Keep your classes easier to understand and to change.
• For example, replace the following instance fields in a
Customer class with a new class called Address. This
way, you can easily cope with changes to addresses, such
as the need to deal with international addresses.

public class Customer {

private String street;

private String city;

private String state;

private int zip;

...

}

public class Address {

private String street;

private String city;

private String state;

private int zip;

...

}

U10M12004-OOP

Class Design Hints - 4

Dr. Helei Cui 106

• Not all fields need individual field accessors and
mutators.
• An employee’s salary - both “get” and “set” are needed
• The hiring date - only “get” is needed

Objects have instance fields that you don’t want others to
get or set, such as an array of state abbreviations in an
Address class.

U10M12004-OOP

Class Design Hints - 5

Dr. Helei Cui 107

• Break up classes that have too many responsibilities.
• E.g., the CardDeck class is a bad design, which can be

separated into two new classes.
public class CardDeck { // bad design

private int[] value;
private int[] suit;
public CardDeck() { . . . }
public void shuffle() { . . . }
public int getTopValue() { . . . }
public int getTopSuit() { . . . }
public void draw() { . . . }

}

public class CardDeck {
private Card[] cards;
public CardDeck() { . . . }
public void shuffle() { . . . }
public Card getTop() { . . . }
public void draw() { . . . }

}

public class Card {
private int value;
private int suit;
public Card(int aValue, int aSuit)

{ . . . }
public int getValue() { . . . }
public int getSuit() { . . . }

}

Better to introduce a Card class
that represents an individual card.

U10M12004-OOP

Class Design Hints - 6

Dr. Helei Cui 108

• Make the names of your classes and methods
reflect their responsibilities.
• A good convention is that a class name should be:

• a noun, e.g., Order
• a noun preceded by an adjective, e.g., RushOrder
• a gerund (an “-ing” word), e.g., BillingAddress

• As for methods, follow the standard convention:
• accessor methods begin with a lowercase get, e.g.,

getSalary
• mutator methods use a lowercase set, e.g., setSalary

U10M12004-OOP

Class Design Hints - 7

Dr. Helei Cui 109

• Prefer immutable classes.
• The LocalDate class, and other classes from the
java.time package, are immutable - no method can
modify the state of an object. Instead of mutating
objects, methods such as plusDays return new objects
with the modified state.
• When classes are immutable, it is safe to share their

objects among multiple threads.
• Better for classes that represent values, such as a string

or a point in time.
• Not all classes should be immutable.

• It would be strange to have the raiseSalary method
return a new Employee object when an employee gets a
raise.

U10M12004-OOP

Recap

Dr. Helei Cui 110

• 4.1 Introduction to Object-Oriented Programming
• 4.2 Using Predefined Classes
• 4.3 Defining Your Own Classes
• 4.4 Static Fields and Methods
• 4.5 Method Parameters
• 4.6 Object Construction
• 4.7 Packages
• 4.8 JAR Files
• 4.9 Documentation Comments
• 4.10 Class Design Hints

