
U10M12004-OOP

Object Oriented
Programming

Chapter 5
Inheritance

Slides partially adapted from lecture
notes by Cay Horstmann

Dr. Helei Cui

24 Apr 2023

U10M12004-OOP

Recap

• Inheritance allows classes to derive from other
classes.

Dr. Helei Cui 2

Car

SUV Sportscar

With inheritance, reusability is a major advantage. You can
reuse the fields and methods of the existing class.

U10M12004-OOP

Contents

Dr. Helei Cui 3

• 5.1 Classes, Superclasses, and Subclasses
• 5.2 Object: The Cosmic Superclass
• 5.3 Generic Array Lists
• 5.4 Object Wrappers and Autoboxing
• 5.5 Methods with a Variable Number of Parameters
• 5.6 Enumeration Classes
• 5.7 Reflection (Optional)
• 5.8 Design Hints for Inheritance

U10M12004-OOP

Manager is an Employee

Dr. Helei Cui 4

• Background story:
• In a company, managers are just like employees in many

respects. Both employees and managers are paid a salary.
• However, while employees are expected to complete their

assigned tasks in return for receiving their salary, managers get
bonuses if they actually achieve what they are supposed to do.

Manager Employee

“is-a” relationship

The inheritance, or “is–a” relationship,
expresses a relationship between a
more special and a more general class.

U10M12004-OOP

UML Diagram

Dr. Helei Cui 5

Manager Employee

“is-a” relationship

U10M12004-OOP

5.1.1 Defining Subclasses

Dr. Helei Cui 6

• Use the extends keyword:

• The existing class (i.e., Employee) is called the superclass, base
class, or parent class.

• The new class (i.e., Manager) is called the subclass, derived
class, or child class.

public class Manager extends Employee {
// added methods and fields

}

The prefixes super and sub come from the language of sets
used in theoretical computer science and mathematics.

U10M12004-OOP

5.1.1 Defining Subclasses

Dr. Helei Cui 7

• Subclasses have more functionality than their superclasses.
• Manager adds a new field to store the bonus, and a new

method to set it.

• Manager inherits the fields and methods from Employee:
• Fields: name, salary, hireDay, and bonus.
• Methods: getName, getHireday, getSalary, raiseSalary, and setBonus.

public class Manager extends Employee {
private double bonus;
public void setBonus(double bonus) {

this.bonus = bonus;
}

}

U10M12004-OOP

5.1.1 Defining Subclasses

Dr. Helei Cui 8

• When defining a subclass by extending its superclass,
you only need to indicate the differences between
the subclass and the superclass.

• General methods ---> superclass
• Specialized methods ---> subclass

• Factoring out common functionality by moving it to a
superclass is routine in OOP.

U10M12004-OOP

5.1.2 Overriding Methods

Dr. Helei Cui 9

• When an inherited method is not appropriate, you
need to override it in the subclass.
• First attempt:

• Reason:
• Subclass methods cannot access private superclass fields.

public class Manager extends Employee {
public double getSalary() {

return salary + bonus; // won't work
}

}

U10M12004-OOP

5.1.2 Overriding Methods

Dr. Helei Cui 10

• Second attempt:

• Solution: use super to avoid recursive call.

• “super” is not a reference to an object. Instead, super
is a special keyword that directs the compiler to invoke
the superclass method.

public double getSalary() {
return getSalary() + bonus; // still won't work

}

public double getSalary() {
return super.getSalary() + bonus;

}

A subclass can add fields, and it can add methods or override
the methods of the superclass. However, inheritance can never
take away any fields or methods.

U10M12004-OOP

5.1.3 Subclass Constructors

Dr. Helei Cui 11

• A subclass constructor can invoke a superclass
constructor:

• The call using super must be the first statement in the
constructor for the subclass.
• If no explicit call to superclass constructor, no-argument

constructor of superclass is invoked.
• If the superclass does not have a no-argument constructor,

the compiler reports an error.

public Manager(String name, double salary, int year, int month, int day) {
super(name, salary, year, month, day);
bonus = 0;

}

U10M12004-OOP

this & super

Dr. Helei Cui 12

• The this keyword:
• to denote a reference to the implicit parameter
• to call another constructor of the same class

• The super keyword:
• to invoke a superclass method
• to invoke a superclass constructor

• When used to invoke constructors, the this and super
keywords are closely related.
• The constructor calls can only occur as the first statement

in another constructor.
• The constructor parameters are either passed to another

constructor of the same class (this) or a constructor of
the superclass (super).

U10M12004-OOP

Dynamic Binding in ManagerTest.java

Dr. Helei Cui 13

• The virtual machine knows about the actual type of the object
to which e refers, and therefore can invoke the correct method.
• This is called (dynamic) polymorphism, i.e., an object variable (such as

the variable e) can refer to multiple actual types.
• This is a perfect example of dynamic binding as in overriding both

parent and child classes have same method and in this case the type of
the object determines which method is to be executed. And the type
of object is determined at the run time.

Manager boss = new Manager("Carl Cracker", 80000, 1987, 12, 15);
boss.setBonus(5000);

var staff = new Employee[3]; // make an array of three employees
staff[0] = boss;
staff[1] = new Employee("Harry Hacker", 50000, 1989, 10, 1);
staff[2] = new Employee("Tony Tester", 40000, 1990, 3, 15);

for (Employee e : staff) {
System.out.println(e.getName() + " " + e.getSalary());

}

U10M12004-OOP

5.1.4 Inheritance Hierarchies

Dr. Helei Cui 14

• The collection of all classes extending a common
superclass is called an inheritance hierarchy.

Figure 5.1 Employee inheritance hierarchy

• The path from a
particular class to
its ancestors in
the inheritance
hierarchy is its
inheritance chain.

U10M12004-OOP

5.1.5 Polymorphism

Dr. Helei Cui 15

• Simple rule (“is-a” rule):
• Every object of the subclass is an object of the superclass.
• But the opposite is not true.

• Substitution principle:
• You can use a subclass object whenever the program

expects a superclass object.
• For example:
• You can assign a subclass object to a superclass variable.

Employee e;
e = new Employee(. . .); // Employee object expected
e = new Manager(. . .); // OK, Manager can be used as well

U10M12004-OOP

5.1.5 Polymorphism

Dr. Helei Cui 16

• Polymorphism: A variable can refer to multiple types.
• A variable of type Employee can refer to an object of type
Employee or to an object of any subclass of the Employee class
(e.g., Manager, Executive, and Secretary).

• The variables staff[0] and boss refer to the same object.
However, staff[0] is considered to be only an Employee
object by the compiler.

• You cannot assign a superclass reference to a subclass variable.
• Reason: Not all employees are managers.

Manager boss = new Manager(. . .);
Employee[] staff = new Employee[3];
staff[0] = boss; // staff[0] and boss refer to the same object.

boss.setBonus(5000); // OK
staff[0].setBonus(5000); // ERROR
Manager m = staff[i]; // ERROR

U10M12004-OOP

5.1.6 Understanding Method Calls

Dr. Helei Cui 17

• x.f(args) - suppose x is declared to be of type C.
1. The compiler finds all accessible methods called f in C

and its superclasses.
2. The compiler selects the method whose parameter

types match the argument types (overloading
resolution).

3. If the method is private, static, final, or a
constructor, then the compiler knows exactly which
method to call (static binding).

4. Otherwise, the exact method is found at runtime
(dynamic binding).

U10M12004-OOP

5.1.6 Understanding Method Calls

Dr. Helei Cui 18

• The Employee method table shows that all methods
are defined in the Employee class itself:

• The manager method table is slightly different.
• Three methods are inherited, one method is redefined,

and one method is added in Manager table.

Employee:
getName() -> Employee.getName()
getSalary() -> Employee.getSalary()
getHireDay() -> Employee.getHireDay()
raiseSalary(double) -> Employee.raiseSalary(double)

Manager:
getName() -> Employee.getName()
getSalary() -> Manager.getSalary()
getHireDay() -> Employee.getHireDay()
raiseSalary(double) -> Employee.raiseSalary(double)
setBonus(double) -> Manager.setBonus(double)

U10M12004-OOP

5.1.6 Understanding Method Calls

Dr. Helei Cui 19

• At runtime, the call e.getSalary() is resolved as follows:
1. First, the virtual machine fetches the method table for the actual

type of e. That may be the table for Employee, Manager, or
another subclass of Employee.

2. Then, the virtual machine looks up the defining class for the
getSalary() signature. Now it knows which method to call.

3. Finally, the virtual machine calls the method.

• Dynamic binding makes programs extensible without the
need for modifying existing code.
• Suppose a new class Executive is added and there is the possibility

that the variable e refers to an object of that class.
• The code containing the call e.getSalary() need not be recompiled.
• The Executive.getSalary() method is called automatically if e

happens to refer to an object of type Executive.

U10M12004-OOP

5.1.7 Preventing Inheritance: Final Classes and Methods

Dr. Helei Cui 20

• Final classes cannot be extended.
• Use final modifier when defining a class.

• Final methods cannot be overridden by subclasses.
• Use final modifier.

• All methods (not fields) in a final class are automatically final.

public final class Executive extends Manager {
. . .

}

public class Employee {
. . .
public final String getName() {

return name;
}

}

Use only for design (to make sure its semantics cannot be
changed in a subclass) - not necessary for performance.

U10M12004-OOP

5.1.8 Casting

Dr. Helei Cui 21

• The process of forcing a conversion from one type
to another is called casting.

• Use a similar syntax to make a cast of an object
reference.

• Make a cast is to use an object in its full capacity after its
actual type has been temporarily forgotten.
• You can cast only within an inheritance hierarchy.

double x = 3.405;
int nx = (int) x; // converts the value of x into an integer

Manager boss = (Manager) staff[0];
boss.setBonus(...); // call Manager methods

U10M12004-OOP

5.1.8 Casting

Dr. Helei Cui 22

• If staff[1] wasn't actually a Manager, a
ClassCastException occur.

• Can test with instanceof operator:

• Compiler won't let you make absurd casts:

Manager boss = (Manager) staff[1]; // ERROR

if (staff[1] instanceof Manager) {
boss = (Manager) staff[1];
. . .

}

String c = (String) staff[1]; // Compile-time error

The only reason to make the cast is to use a method that
is unique to managers, such as setBonus.

U10M12004-OOP

5.1.9 Abstract Classes

Dr. Helei Cui 23

• When factoring out common classes,
it can become difficult to implement
methods in the most general classes.
• E.g., classes Employee and Student

can have a common superclass Person.

• Each class defines a getDescription method, returning a
description string:
an employee with a salary of $50,000.00
a student majoring in computer science

It is easy to implement this method for the Employee and Student
classes. But what information can you provide in the Person class?

U10M12004-OOP

5.1.9 Abstract Classes

Dr. Helei Cui 24

• Declare method as abstract and don't provide implementation:

• Class with abstract methods must be declared abstract:

• Abstract classes can have fields, constructors, and concrete
methods:

public abstract class Person

public abstract class Person {
private String name;
public Person(String name) {

this.name = name;
}
public abstract String getDescription();
public String getName() {

return name;
}

}

public abstract String getDescription();

U10M12004-OOP

5.1.9 Abstract Classes

Dr. Helei Cui 25

• When you extend an abstract class, you have two choices:
• You can leave some or all of the abstract methods undefined; then

you must tag the subclass as abstract as well.
• Or you can define all methods, and the subclass is no longer

abstract.

• Abstract classes cannot be instantiated!

• You can still create object variables of an abstract class, but such a
variable must refer to an object of a nonabstract subclass.

Person p1 = new Person("Vince Vu"); // Error!
Person p2 = new Student("Vince Vu", "Economics"); // Ok

U10M12004-OOP

5.1.10 Protected Access

Dr. Helei Cui 26

• Recall that a subclass cannot access the private fields
of its superclass.
• But a protected field or method is accessible from

subclasses:

• Caution:
• Protected features have package visibility.
• Protected fields restrict evolution - anyone can extend a class.

• Protected methods are sometimes useful for methods
that are “tricky” to use.
• This indicates that the subclasses (which, presumably, know

their ancestor well) can be trusted to use the method
correctly, but other classes cannot.

public class Employee {
protected double salary; // Manager methods can access it

}

U10M12004-OOP

Access Control Modifiers

Dr. Helei Cui 27

1. Accessible in the class only (private).
2. Accessible by the world (public).
3. Accessible in the package and all subclasses

(protected).
4. Accessible in the package - the (unfortunate)

default. No modifiers are needed.

U10M12004-OOP

Contents

Dr. Helei Cui 28

• 5.1 Classes, Superclasses, and Subclasses
• 5.2 Object: The Cosmic Superclass
• 5.3 Generic Array Lists
• 5.4 Object Wrappers and Autoboxing
• 5.5 Methods with a Variable Number of Parameters
• 5.6 Enumeration Classes
• 5.7 Reflection (Optional)
• 5.8 Design Hints for Inheritance

U10M12004-OOP

5.2.1 Variables of Type Object

Dr. Helei Cui 29

• The Object is the superclass of all Java classes.

• Only primitive types (numbers, characters, and
boolean values) are not objects.
• Arrays (both objects and primitive types) are class

types that extend the Object class.
Employee[] staff = new Employee[10];
obj = staff; // OK
obj = new int[10]; // OK

Object obj = new Employee("Harry Hacker", 35000);
Employee e = (Employee) obj;

U10M12004-OOP

5.2.2 The equals Method

Dr. Helei Cui 30

• The equals method tests whether two object references
are identical.
• You can override it to test if two employees equal if they have the

same name, salary, and hire date.
public class Employee {

public boolean equals(Object otherObject) {
// a quick test to see if the objects are identical
if (this == otherObject) return true;
// must return false if the explicit parameter is null
if (otherObject == null) return false;
// if the classes don't match, they can't be equal
if (getClass() != otherObject.getClass()) return false;
// now we know otherObject is a non-null Employee
Employee other = (Employee) otherObject;
// test whether the fields have identical values
return name.equals(other.name)

&& salary == other.salary
&& hireDay.equals(other.hireDay);

}
}

U10M12004-OOP

5.2.2 The equals Method

Dr. Helei Cui 31

• Static Objects.equals method is null safe.
• Returns true if both arguments are null, false if only one is null.

• When you define the equals method for a subclass, first call
equals on the superclass.
• If that test doesn’t pass, then the objects can’t be equal.

return Objects.equals(name, other.name)
&& salary == other.salary
&& Object.equals(hireDay, other.hireDay);

public class Manager extends Employee {
. . .
public boolean equals(Object otherObject) {

if (!super.equals(otherObject)) return false;

Manager other = (Manager) otherObject;
return bonus == other.bonus;

}
}

U10M12004-OOP

5.2.3 Equality Testing and Inheritance

Dr. Helei Cui 32

• The equals method needs to be:
• Reflexive - x.equals(x) returns true.
• Symmetric - if x.equals(y), then y.equals(x).
• Transitive - if x.equals(y) and y.equals(z), then
x.equals(z).

• Consistent - If the objects to which x and y refer
haven’t changed, then x.equals(y) always return the
same value.

• For any non-null reference x, x.equals(null) return
false.

U10M12004-OOP

5.2.3 Equality Testing and Inheritance

Dr. Helei Cui 33

• Hard to do with mixed types.
• If e is an Employee and m is a Manager, then m.equals(e)

and e.equals(m) must be the same.
• If the meaning of equals must be fixed in the superclass:

public class ClassName {
public final boolean equals(Object otherObject) {

if (this == otherObject) return true;

if (otherObject == null) return false;

if (!(otherObject instanceOf ClassName)) return false;

ClassName other = (ClassName) otherObject;

return id == other.id;
}

}

U10M12004-OOP

5.2.4 The hashCode Method

Dr. Helei Cui 34

• A hash code is an integer that is derived from an object.
• Hash codes should be scrambled:

• If x and y are two distinct objects, there should be a high probability
that x.hashCode() and y.hashCode() are different.

• Hash code computation in the String class:
int hash = 0;
for (int i = 0; i < length(); i++) {

hash = 31 * hash + charAt(i);
}

Table 5.1 Hash Codes Resulting
from the hashCode Method

U10M12004-OOP

5.2.4 The hashCode Method

Dr. Helei Cui 35

• Every object has a default hash code. Object.hashCode is
derived from memory address.

• Override hashCode() whenever you override equals().
• Combine the hash codes of the fields that the equals

method compares.
• If x.equals(y) is true, then x.hashCode() must return the same

value as y.hashCode().
public class Employee {

. . .
public int hashCode() {

return Objects.hash(name, salary, hireDay);
}

}

var s = "Ok";
var sb = new StringBuilder(s);
System.out.println(s.hashCode() + " " + sb.hashCode());
var t = new String("Ok");
var tb = new StringBuilder(t);
System.out.println(t.hashCode() + " " + tb.hashCode());

U10M12004-OOP

5.2.5 The toString Method

Dr. Helei Cui 36

• Return a string representing the value of this object.
• E.g., “java.awt.Point[x=10,y=20]” is the output of the Point class’s

toString method.
• You can call getClass().getName() to obtain a string with the

class name.

• The subclass should define its own toString method and
add the subclass fields.

public String toString()
{

return getClass().getName()+ "[name=" + name + ",salary=" +
salary + ",hireDay=" + hireDay + "]";

}

public class Manager extends Employee {
. . .
public String toString() {

return super.toString() + "[bonus=" + bonus + "]";
}

}

U10M12004-OOP

5.2.5 The toString Method

Dr. Helei Cui 37

• When you concatenate a string and an object, the
toString() method is automatically invoked on the
object.

• The Object class defines the toString() method to print
the class name and the hash code of the object.

var p = new Point(10, 20);
String message = "The current position is " + p;
// automatically invokes p.toString()

System.out.println(System.out);
// outputs java.io.PrintStream@2f6684

We strongly recommend that you add a toString()
method to each class that you write.

U10M12004-OOP

Contents

Dr. Helei Cui 38

• 5.1 Classes, Superclasses, and Subclasses
• 5.2 Object: The Cosmic Superclass
• 5.3 Generic Array Lists
• 5.4 Object Wrappers and Autoboxing
• 5.5 Methods with a Variable Number of Parameters
• 5.6 Enumeration Classes
• 5.7 Reflection (Optional)
• 5.8 Design Hints for Inheritance

U10M12004-OOP

Generic Array Lists

Dr. Helei Cui 39

• In C /C++, you have to fix the sizes of arrays at
compile time.
• In Java, you can set the size of an array at runtime.

• The length of an array is fixed - inconvenient when
it is unknown in advance.
• Solution in Java: ArrayList
• ArrayList class manages an Object[] array that grows

and shrinks on demand.
• It is a generic class with a type parameter:

• Use a type parameter such as ArrayList<Employee> to
specify element type.

int actualSize = . . .;
var staff = new Employee[actualSize];

U10M12004-OOP

5.3.1 Declaring Array Lists

Dr. Helei Cui 40

• Can omit type parameter in the constructor:

• Use add method to add object to the end:

• The call staff.size() yields the current size.

• Call the trimToSize method to make the array list at its
permanent size.
• You should only use this when you are sure you won’t add any more

elements to the array list.

var staff = new ArrayList<Employee>(); // use the var keyword
ArrayList<Employee> staff = new ArrayList<>(); // diamond syntax

staff.add(new Employee("Harry Hacker", . . .));

staff.ensureCapacity(100); // capacity is 100
new ArrayList<>(100) // capacity is 100
new Employee[100] // size is 100

staff.size() // for array list
a.length // for array

U10M12004-OOP

5.3.2 Accessing Array List Elements

Dr. Helei Cui 41

• Access and modify elements with the get and set methods:

• Can use “for-each” loop to visit elements:

• To get flexible growth and convenient element access:

Employee e = staff.get(i);
staff.set(i, tony); //equivalent to a[i] = harry

for (Employee e : staff) {
System.out.println(e);

}

var list = new ArrayList<X>();
while (. . .) {

x = . . .;
list.add(x);

}
var a = new X[list.size()]; // define an array
list.toArray(a); // copy into array

U10M12004-OOP

5.3.3 Compatibility between Typed and Raw Array Lists

Dr. Helei Cui 42

• Suppose you have the following legacy class:

• You can pass a typed array list to the update method
without any casts.

• Conversely, when you assign a raw ArrayList to a typed
one, you get a warning.

public class EmployeeDB {
public void update(ArrayList list) { . . . }
public ArrayList find(String query) { . . . }

}

ArrayList<Employee> staff = . . .;
employeeDB.update(staff); // no problem

ArrayList<Employee> result = employeeDB.find(query); // warning

U10M12004-OOP

5.3.3 Compatibility between Typed and Raw Array Lists

Dr. Helei Cui 43

• Using a cast does not make the warning go away.

• For compatibility, the compiler translates all typed array lists into
raw ArrayList objects after checking that the type rules were not
violated.

• In a running program, all array lists are the same - there are no type
parameters in the virtual machine.

• Thus, the casts (ArrayList) and (ArrayList<Employee>) carry out
identical runtime checks.

• Tag the variable that receives the cast with the
@SuppressWarnings("unchecked") annotation.

ArrayList<Employee> result = (ArrayList<Employee>)
employeeDB.find(query); // yields another warning

@SuppressWarnings("unchecked")
ArrayList<Employee> result = (ArrayList<Employee>)
employeeDB.find(query); // yields another warning

U10M12004-OOP

Contents

Dr. Helei Cui 44

• 5.1 Classes, Superclasses, and Subclasses
• 5.2 Object: The Cosmic Superclass
• 5.3 Generic Array Lists
• 5.4 Object Wrappers and Autoboxing
• 5.5 Methods with a Variable Number of Parameters
• 5.6 Enumeration Classes
• 5.7 Reflection (Optional)
• 5.8 Design Hints for Inheritance

U10M12004-OOP

Object Wrappers and Autoboxing

Dr. Helei Cui 45

• ArrayList can only hold objects, not int values.
• An object of the Integer wrapper class wraps an int value.
• Conversion between int and Integer is automatic:

• The conversion is called autoboxing.
• The wrapper classes have obvious names: Integer, Long,
Float, Double, Short, Byte, Character, and Boolean.
• The first six inherit from the common superclass Number.
• The wrapper classes are immutable - you cannot change a wrapped

value after the wrapper has been constructed.
• They are also final, so you cannot subclass them.

var list = new ArrayList<Integer>();
list.add(3); // same as list.add(Integer.valueOf(3))
int n = list.get(i); // same as int n = list.get(i).intValue()

U10M12004-OOP

Object Wrappers and Autoboxing

Dr. Helei Cui 46

• Conversely, when you assign an Integer object to an int value,
it is automatically unboxed.
• The compiler translates “int n = list.get(i);” into “int n =
list.get(i).intValue();”.

• Automatic boxing and unboxing even works with arithmetic
expressions.

• == (only tests whether the objects have identical memory
locations) doesn't work with wrappers.

• Call the equals method to compare wrapper objects.

Integer n = 3;
n++;

Integer a = 1000;
Integer b = 1000;
if (a == b) . . . // probably fail

U10M12004-OOP

Object Wrappers and Autoboxing

Dr. Helei Cui 47

• Since wrappers can be null, it is possible for autounboxing to
throw a NullPointerException:

• If you mix Integer and Double types, the Integer value is
unboxed, and boxed into a Double:

• To convert a string to an integer:

• The wrapper classes can’t be used to implement methods that
modify numeric parameters.
• Because parameters to Java methods are always passed by value.
• Even using Integer still fails, because Integer objects are immutable.

Integer n = null;
System.out.println(2 * n); // throws NullPointerException

Integer n = 1;
Double x = 2.0;
System.out.println(true ? n : x); // prints 1.0

int x = Integer.parseInt(s); //parseInt is a static method

U10M12004-OOP

Contents

Dr. Helei Cui 48

• 5.1 Classes, Superclasses, and Subclasses
• 5.2 Object: The Cosmic Superclass
• 5.3 Generic Array Lists
• 5.4 Object Wrappers and Autoboxing
• 5.5 Methods with a Variable Number of Parameters
• 5.6 Enumeration Classes
• 5.7 Reflection (Optional)
• 5.8 Design Hints for Inheritance

U10M12004-OOP

Methods with a Variable Number of Parameters

Dr. Helei Cui 49

• Some methods take a variable number of arguments.

• Variable arguments are indicated with ellipsis.

• The method actually receives two parameters:
• the format string;
• an Object[] array that holds all other parameters.

System.out.printf("%d", n);
System.out.printf("%d %s", n, "widgets");

public class PrintStream {
. . .
public PrintStream printf(String fmt, Object... args)
{ . . . }

}

System.out.printf("%d %s", new Object[] { new Integer(n),
"widgets" });

U10M12004-OOP

Methods with a Variable Number of Parameters

Dr. Helei Cui 50

• You can define your own “variable arguments”
methods.

• Call the method like this:

• The compiler passes a “new double[] { 3.1, 40.4, -5 }”
to the max function.

public static double max(double... values) {
double largest = Double.NEGATIVE_INFINITY;
for (double v : values) if (v > largest) largest = v;
return largest;

}

double m = max(3.1, 40.4, -5);

U10M12004-OOP

Contents

Dr. Helei Cui 51

• 5.1 Classes, Superclasses, and Subclasses
• 5.2 Object: The Cosmic Superclass
• 5.3 Generic Array Lists
• 5.4 Object Wrappers and Autoboxing
• 5.5 Methods with a Variable Number of Parameters
• 5.6 Enumeration Classes
• 5.7 Reflection (Optional)
• 5.8 Design Hints for Inheritance

U10M12004-OOP

Enumeration Classes

Dr. Helei Cui 52

• Enumeration class defines all instances.

• This is a class, with four instances.
• Use == to compare them (no need to use equals).

• Also, you can add constructors, methods, and fields:

• The constructor of an enumeration is always private.

public enum Size { SMALL, MEDIUM, LARGE, EXTRA_LARGE };

public enum Size {
SMALL("S"), MEDIUM("M"), LARGE("L"), EXTRA_LARGE("XL");
private String abbreviation;
private Size(String abbreviation) {

this.abbreviation = abbreviation;
}
public String getAbbreviation() {

return abbreviation;
}

}

U10M12004-OOP

Enumeration Classes

Dr. Helei Cui 53

• All enumeration classes are subclasses of Enum and
inherit methods:
• toString() - yields the name "SMALL", "MEDIUM", ...
• ordinal() - yields the position 0, 1, ...

String toString()
// returns the name of this enumerated constant.
int ordinal()
// returns the zero-based position of this enumerated constant
in the enum declaration.

U10M12004-OOP

Contents

Dr. Helei Cui 54

• 5.1 Classes, Superclasses, and Subclasses
• 5.2 Object: The Cosmic Superclass
• 5.3 Generic Array Lists
• 5.4 Object Wrappers and Autoboxing
• 5.5 Methods with a Variable Number of Parameters
• 5.6 Enumeration Classes
• 5.7 Reflection (Optional)
• 5.8 Design Hints for Inheritance

U10M12004-OOP

Reflection

Dr. Helei Cui 55

• Reflection is an API which is
used to examine or modify
the behavior of methods,
classes, interfaces at runtime.
• The required classes for reflection

are provided under java.lang.reflect
package.

• Reflection gives us information
about the class to which an object
belongs and also the methods of
that class which can be executed by
using the object.

• Through reflection we can invoke
methods at runtime irrespective of
the access specifier used with them.

https://www.geeksforgeeks.org/reflection-in-java/

U10M12004-OOP

Reflection

Dr. Helei Cui 56

• Reflection can be used to get information about
• Class - The getClass() method is used to get the name of

the class to which an object belongs.
• Constructors - The getConstructors() method is used to

get the public constructors of the class to which an
object belongs.
• Methods - The getMethods() method is used to get the

public methods of the class to which an objects belongs.

• Example: https://www.geeksforgeeks.org/reflection-in-java/

https://www.geeksforgeeks.org/reflection-in-java/

U10M12004-OOP

Reflection

Dr. Helei Cui 57

• Advantages of Using Reflection:
• Extensibility Features: An application may make use of

external, user-defined classes by creating instances of
extensibility objects using their fully-qualified names.

• Debugging and testing tools: Debuggers use the property of
reflection to examine private members on classes.

• Drawbacks:
• Performance Overhead: Reflective operations have slower

performance than their non-reflective counterparts, and
should be avoided in sections of code which are called
frequently in performance-sensitive applications.

• Exposure of Internals: Reflective code breaks abstractions and
therefore may change behavior with upgrades of the platform.

https://www.geeksforgeeks.org/reflection-in-java/

U10M12004-OOP

Contents

Dr. Helei Cui 58

• 5.1 Classes, Superclasses, and Subclasses
• 5.2 Object: The Cosmic Superclass
• 5.3 Generic Array Lists
• 5.4 Object Wrappers and Autoboxing
• 5.5 Methods with a Variable Number of Parameters
• 5.6 Enumeration Classes
• 5.7 Reflection (Optional)
• 5.8 Design Hints for Inheritance

U10M12004-OOP

Design Hints for Inheritance

Dr. Helei Cui 59

1. Place common operations and fields in the superclass.
• Recall the name field in the Person class, so you are not required to

replicate it in the Employee and Manager classes.

2. Don’t use protected fields.
• Can be accessed by subclasses.
• Could be dangerous:

• The set of subclasses is unbounded - anyone can form a subclass of your
classes and then write code that directly accesses protected instance
fields, thereby breaking encapsulation.

• In Java, all classes in the same package have access to protected fields.
• Can be useful to indicate methods that are not ready for general use

and should be redefined in subclasses.

U10M12004-OOP

Design Hints for Inheritance

Dr. Helei Cui 60

3. Use inheritance to model the “is-a” relationship.
• Do the “is-a” test.

4. Don’t use inheritance unless all inherited methods make
sense.
• Suppose we want to write a Holiday class. Surely every holiday is a day,

and days can be expressed as instances of the GregorianCalendar
class, so we can use inheritance.

• Unfortunately, the set of holidays is not closed under the inherited
operations. One of the public methods of GregorianCalendar is add.
And add can turn holidays into nonholidays.

class Holiday extends GregorianCalendar { . . . }
. . .
Holiday christmas;
christmas.add(Calendar.DAY_OF_MONTH, 12);

U10M12004-OOP

Design Hints for Inheritance

Dr. Helei Cui 61

5. Don’t change the expected behavior when you override a
method.
• Can you “fix” the issue of the Holiday add method by redefining it?

• Answer is NO!
• The following code should work no matter whether x is a
GregorianCalendar or Holiday object:

6. Use polymorphism, not type information.

• Do action1 and action2 represent a common concept? If so, use
polymorphism.

if (x is of type 1)
action1(x);

else if (x is of type 2)
action2(x);

x.action();

int d1 = x.get(Calendar.DAY_OF_MONTH);
x.add(Calendar.DAY_OF_MONTH, 1);
int d2 = x.get(Calendar.DAY_OF_MONTH);
System.out.println(d2 - d1);

U10M12004-OOP

Recap

Dr. Helei Cui 62

• 5.1 Classes, Superclasses, and Subclasses
• 5.2 Object: The Cosmic Superclass
• 5.3 Generic Array Lists
• 5.4 Object Wrappers and Autoboxing
• 5.5 Methods with a Variable Number of Parameters
• 5.6 Enumeration Classes
• 5.7 Reflection (Optional)
• 5.8 Design Hints for Inheritance

