
U10M12004-OOP

Object Oriented 
Programming

Chapter 7
Exceptions

Slides partially adapted from lecture 
notes by Cay Horstmann

Dr. Helei Cui

17 May 2023



U10M12004-OOP

Contents

Dr. Helei Cui 2

• 7.1 Dealing with Errors
• 7.2 Catching Exceptions
• 7.3 Tips for Using Exceptions



U10M12004-OOP

7.1 Dealing with Errors

Dr. Helei Cui 3

• When an error occurs, your program can:
• Return to a safe state and allow the user to execute 

other commands.
• Save the user's work and terminate the program.

• What kind of errors do you need to consider?
1. User input errors.
2. Device errors. 
3. Physical limitations.
4. Code errors.



U10M12004-OOP

7.1 Dealing with Errors

Dr. Helei Cui 4

• What can you do when an error occurs?
1. Return an error code.
2. Terminate the program.
3. Throw an exception.

• Exceptions have their own syntax and are part of a 
special inheritance hierarchy.



U10M12004-OOP

7.1.1 The Classification of Exceptions

Dr. Helei Cui 5

• In Java, an exception object is always an instance of a 
class derived from Throwable.
• You could create your own exception classes if those built 

into Java do not suit your needs.

Figure 7.1 is a 
simplified diagram 
of the exception 
hierarchy in Java.



U10M12004-OOP

Error

Dr. Helei Cui 6

• The Error hierarchy describes internal errors and 
resource exhaustion situations inside the Java 
runtime system. 
• You should not throw an object of this type. 

• There is little you can do if such an internal error 
occurs, beyond notifying the user and trying to 
terminate the program gracefully. 
• These situations are quite rare.



U10M12004-OOP

Exception

Dr. Helei Cui 7

• RuntimeException: happens when you made a 
programming error.
• A bad cast
• An out-of-bounds array access
• A null pointer access

• Other exception: occurs because a bad thing happened, 
e.g., an I/O error.
• Trying to read past the end of a file
• Trying to open a file that doesn’t exist
• Trying to find a Class object for a string that does not denote an 

existing class

The rule “If it is a RuntimeException, it was your fault” works 
pretty well.



U10M12004-OOP

Exception

Dr. Helei Cui 8

• You could have avoided that 
ArrayIndexOutOfBoundsException by testing the array index 
against the array bounds. 

• The NullPointerException would not have happened had you 
checked whether the variable was null before using it.

• Any exception that derives from the class Error or the 
class RuntimeException is unchecked exception. All 
other exceptions are called checked exceptions.
• The compiler checks that you provide exception handlers for all 

checked exceptions.

The rule “If it is a RuntimeException, it was your fault” works 
pretty well.



U10M12004-OOP

7.1.2 Declaring Checked Exceptions

Dr. Helei Cui 9

• A Java method can throw an exception if it encounters a 
situation it cannot handle.
• “A method will not only tell the Java compiler what values it can 

return, it is also going to tell the compiler what can go wrong.”
• For example, code that attempts to read from a file knows that the 

file might not exist or that it might be empty. The code that tries to 
process the information in a file therefore will need to notify the 
compiler that it can throw some sort of IOException.

• The place where your method can throw an exception is 
the header of the method.
• For example, here is the declaration of one of the constructors of 

the FileInputStream class from the standard library.

public FileInputStream(String name) throws FileNotFoundException



U10M12004-OOP

7.1.2 Declaring Checked Exceptions

Dr. Helei Cui 10

• There are four situations that an exception is thrown:
1. Call a method that throws a checked exception.
2. Detect an error and throw a checked exception with the 

throw statement.
3. Make a programming error, such as a[-1] = 0 that 

gives rise to an unchecked exception.
4. An internal error occurs in the virtual machine or runtime 

library.
• If you write a method that might throw such an exception, 

you need to declare that fact.



U10M12004-OOP

7.1.2 Declaring Checked Exceptions

Dr. Helei Cui 11

• Add a throws clause:

• A throws clause can list multiple exceptions:

• Don't declare unchecked exceptions:

• Instead, fix your code so that this doesn't happen!

public Image loadImage(String s) throws IOException

public Image loadImage(String s) throws FileNotFoundException, 
EOFException

void drawImage(int i) throws ArrayIndexOutOfBoundsException
// bad style



U10M12004-OOP

7.1.2 Declaring Checked Exceptions

Dr. Helei Cui 12

• In summary, a method must declare all the checked 
exceptions that it might throw. 
• Unchecked exceptions are either beyond your control (Error) or 

result from conditions that you should not have allowed in the first 
place (RuntimeException). 

• If your method fails to faithfully declare all checked exceptions, the 
compiler will issue an error message. 

• Of course, as you have already seen in quite a few examples, 
instead of declaring the exception, you can also catch it. Then the 
exception won’t be thrown out of the method, and no throws 
specification is necessary. 

When a method in a class declares that it throws an 
exception that is an instance of a particular class, it may 
throw an exception of that class or of its subclasses. 



U10M12004-OOP

7.1.3 How to Throw an Exception

Dr. Helei Cui 13

• Suppose something terrible happened in your code. You read 
a header that promised Content-length: 1024, but you got an 
end of file after 733 characters.
• You may decide this situation is so abnormal that you want to throw 

an exception.
• Find an exception type to throw.

• The Java library has an EOFException with description: 
“Signals that an EOF has been reached unexpectedly during 
input.”

• Construct an object and throw it:

• Or, if you prefer:
throw new EOFException();

var e = new EOFException();
throw e;



U10M12004-OOP

7.1.3 How to Throw an Exception

Dr. Helei Cui 14

• Here is how it all fits together:

• Or better, provide a reason:

String readData(Scanner in) throws EOFException{
. . .
while (. . .){

if (!in.hasNext()) // EOF encountered
{

if (n < len)
throw new EOFException();

}
. . .

}
return s;

}

String gripe = "Content-length: " + len + ", Received: " + n;
throw new EOFException(gripe);



U10M12004-OOP

7.1.3 How to Throw an Exception

Dr. Helei Cui 15

• As you can see, throwing an exception is easy if one of the 
existing exception classes works for you. In this case:

1. Find an appropriate exception class.
2. Make an object of that class.
3. Throw it.

• Once a method throws an exception, it does not return to its 
caller. 
• This means you do not have to worry about cooking up a default 

return value or an error code.



U10M12004-OOP

7.1.4 Creating Exception Classes

Dr. Helei Cui 16

• Create your own exception class if your situation isn’t 
covered by an exception in the standard library.
• Just derive it from Exception, or from a child class of 
Exception such as IOException.

• Then you can throw an object of your own exception type:
String readData(BufferedReader in) throws FileFormatException{

while (. . .){
if (ch == -1) // EOF encountered
{

if (n < len)
throw new FileFormatException();

}
}
return s;

}

class FileFormatException extends IOException {
public FileFormatException() {}
public FileFormatException(String gripe){ super(gripe); }

}



U10M12004-OOP

Contents

Dr. Helei Cui 17

• 7.1 Dealing with Errors
• 7.2 Catching Exceptions
• 7.3 Tips for Using Exceptions



U10M12004-OOP

7.2.1 Catching an Exception

Dr. Helei Cui 18

• If an exception is thrown, and nobody catches it, the program 
will terminate and print a message to the console.
• Use a try/catch block to catch an exception:

• If any code inside the try block throws an exception of the 
class specified in the catch clause, then

1. The program skips the remainder of the code in the try block.
2. The program executes the handler code inside the catch

clause.

try {
code
more code
more code

}
catch (ExceptionType e){

handler for this type
}



U10M12004-OOP

7.2.1 Catching an Exception

Dr. Helei Cui 19

• If none of the code inside the try block throws an 
exception, then the program skips the catch clause.
• If any of the code in a method throws an exception of a 

type other than the one named in the catch clause, this 
method exits immediately. 

public void read(String filename) {
try {

var in = new FileInputStream(filename);
int b;
while ((b = in.read()) != -1) {

process input
}

}
catch (IOException exception) {

exception.printStackTrace();
}

}



U10M12004-OOP

7.2.1 Catching an Exception

Dr. Helei Cui 20

• Only do this if you can actually do something useful when 
the exception occurs.

• There is no shame in propagating exceptions.
• One exception: Sometimes you need to catch an 

exception when you override a method that is declared to 
throw no checked exceptions.
• You are not allowed to add more throws specifiers to a subclass 

method than are present in the superclass method.

public void read(String filename) throws IOException{
var in = new FileInputStream(filename);
int b;
while ((b = in.read()) != -1){

process input
}

}



U10M12004-OOP

7.2.2 Catching Multiple Exceptions

Dr. Helei Cui 21

• You can catch multiple exceptions in separate catch clauses:

• To find out more about the object

• Work with the inheritance hierarchy of exceptions: Catch
more specific exceptions before more general ones.

try {
code that might throw exceptions

}
catch (FileNotFoundException e) {

emergency action for missing files
}
catch (UnknownHostException e) {

emergency action for unknown hosts
}
catch (IOException e) {

emergency action for all other I/O problems
}

e.getMessage() // to get the detailed error message
e.getClass().getName() // to get the actual type of the exception object



U10M12004-OOP

New Feature of Java 7

Dr. Helei Cui 22

• As of Java 7, you can catch multiple exception types 
in the same catch clause. 
• For example, suppose that the action for missing files and 

unknown hosts is the same. Then you can combine the 
catch clauses:

• This feature is only needed when catching exception types 
that are not subclasses of one another.

try {
code that might throw exceptions

} catch (FileNotFoundException | UnknownHostException e) {
emergency action for missing files and unknown hosts

} catch (IOException e) {
emergency action for all other I/O problems

}



U10M12004-OOP

Notes

Dr. Helei Cui 23

• When you catch multiple exceptions, the exception 
variable is implicitly final. 
• For example, you cannot assign a different value to e in 

the body of the clause.

• Catching multiple exceptions doesn’t just make your 
code look simpler but also more efficient. 
• The generated bytecodes contain a single block for the 

shared catch clause.

catch (FileNotFoundException | UnknownHostException e) { ...}



U10M12004-OOP

7.2.3 Rethrowing and Chaining Exceptions

Dr. Helei Cui 24

• Sometimes you want to catch an exception and rethrow it 
as a different type:

• Better choice: Set the original exception as the cause.

• The cause can later be retrieved with the getCause method.

. . .
catch (SQLException original) {

var e = new ServletException("database error");
e.initCause(original);
throw e;

}

try {
access the database

}
catch (SQLException e){

throw new ServletException("database error: " + e.getMessage());
}

Throwable original = caughtException.getCause();



U10M12004-OOP

7.2.3 Rethrowing and Chaining Exceptions

Dr. Helei Cui 25

• If you just want to log an exception and rethrow it 
without any change:

try {
access the database

} catch (Exception e) {
logger.log(level, message, e);
throw e;

}



U10M12004-OOP

7.2.4 The finally Clause

Dr. Helei Cui 26

• Suppose your code writes a resource that needs to be 
relinquished:

• If the . . . code throws an exception, the in.close() 
statement is never executed.
• Remedy: Put it in a finally clause:

• You can use the finally clause without a catch clause.

var in = new FileInputStream(. . .);
. . .
in.close();

InputStream in = . . .;
try {

. . .
} finally{

in.close();
}



U10M12004-OOP

7.2.4 The finally Clause

Dr. Helei Cui 27

• Let’s look at the three possible situations in which the 
program will execute the finally clause.

var in = new FileInputStream(. . .);
try {

// 1
code that might throw exceptions
// 2

} catch (IOException e) {
// 3
show error message
// 4

} finally {
// 5
in.close();

} 
// 6



U10M12004-OOP

7.2.4 The finally Clause

Dr. Helei Cui 28

• The in.close() statement in the finally clause is 
executed whether or not an exception is encountered in 
the try block. 
• If an exception is encountered, it is rethrown and must be 

caught in another catch clause.
InputStream in = . . .;
try {

try {
code that might throw exceptions

} finally{
in.close();

}
} catch (IOException e) {

show error message
}



U10M12004-OOP

7.2.5 The try-with-Resources Statement

Dr. Helei Cui 29

• As of Java 7, there is a useful shortcut to the code pattern.

• The Resource class must implement the AutoCloseable
interface, which has a single method:

• The try-with-Resources statement has the form in its 
simplest variant:

open a resource
try {

work with the resource
} finally {

close the resource
}

void close() throws Exception

try (Resource res = . . .) {
work with res

}



U10M12004-OOP

7.2.5 The try-with-Resources Statement

Dr. Helei Cui 30

• You can specify multiple resources.

• No matter how the block exits, both in and out are 
closed.
• As of Java 9, you can provide previously declared 

effectively final variables in the try header:

try (var in = new Scanner (
new FileInputStream("/usr/share/dict/words"), StandardCharsets.UTF_8);
var out = new PrintWriter("out.txt", StandardCharsets.UTF_8)) {

while (in.hasNext())
out.println(in.next().toUpperCase());

}

public static void printAll(String[] lines, PrintWriter out) {
try (out) { // effectively final variable

for (String line : lines)
out.println(line);

} // out.close() called here
}



U10M12004-OOP

7.2.5 The try-with-Resources Statement

Dr. Helei Cui 31

• A difficulty arises when the try block throws an exception 
and the close method also throws an exception. 
• The try-with-resources statement handles this situation quite 

elegantly. 
• The original exception is rethrown, and any exceptions thrown by 
close methods are considered “suppressed.” 

• They are automatically caught and added to the original exception 
with the addSuppressed method. 

• If you are interested in them, call the getSuppressed method 
which yields an array of the suppressed expressions from close
methods.

You don’t want to program this by hand. Use the try-with-
resources statement whenever you need to close a resource.



U10M12004-OOP

7.2.6 Analyzing Stack Trace Elements

Dr. Helei Cui 32

• When an exception terminates a program, a stack trace is 
displayed.
• List of pending method calls.

• You can access the text description of a stack trace:

• You can iterate over the stack frames with the 
StackWalker class:

• If you want to process the 
Stream<StackWalker.StackFrame> lazily, call

var t = new Throwable();
var out = new StringWriter();
t.printStackTrace(new PrintWriter(out));
String description = out.toString();

StackWalker walker = StackWalker.getInstance();
walker.forEach(frame -> analyze frame)

walker.walk(stream -> process stream)



U10M12004-OOP

Contents

Dr. Helei Cui 33

• 7.1 Dealing with Errors
• 7.2 Catching Exceptions
• 7.3 Tips for Using Exceptions



U10M12004-OOP

Tips for Using Exceptions

Dr. Helei Cui 34

1. Exception handling is not supposed to replace a simple test.

2. Do not micromanage exceptions.

try{
s.pop();

}
catch (EmptyStackException e){
}

if (!s.empty()) s.pop();

try{
for (i = 0; i < 100; i++){

n = s.pop();
out.writeInt(n);

}
}
catch (IOException e){

// problem writing to file
} 
catch (EmptyStackException e){

// stack was empty
}

PrintStream out;
Stack s;
for (i = 0; i < 100; i++){

try{ n = s.pop();}
catch (EmptyStackException e){

// stack was empty
}
try{

out.writeInt(n);
}
catch (IOException e){

// problem writing to file
}

}



U10M12004-OOP

Tips for Using Exceptions

Dr. Helei Cui 35

3. Make good use of the exception hierarchy:
• Don’t just throw a RuntimeException. Find an 

appropriate subclass or create your own.
• Don’t just catch Throwable.
• Respect the difference between checked and unchecked 

exceptions.
• Do not hesitate to turn an exception into another exception 

that is more appropriate.
4. Do not squelch exceptions:

public Image loadImage(String s) {
try {

code that threatens to throw checked exceptions
} catch (Exception e){

} // so there
}



U10M12004-OOP

Tips for Using Exceptions

Dr. Helei Cui 36

5. When you detect an error, “tough love” works better 
than indulgence.
• When something is very wrong, throw an exception.
• Don't return an error code or a dummy value.
• Return values must be handled by the caller. Exceptions can 

be handled anywhere upstream.
6. Propagating exceptions is not a sign of shame.

• Don't try to handle an exception that you can't remedy.
• Just let it be rethrown so that it can reach a competent 

handler.
public void readStuff(String filename) throws IOException {

var in = new FileInputStream(filename, StandardCharsets.UTF_8);
. . .

}

These two rules can be summarized as: “throw early, 
catch late.”



U10M12004-OOP

Recap

Dr. Helei Cui 37

• 7.1 Dealing with Errors
• 7.2 Catching Exceptions
• 7.3 Tips for Using Exceptions


