
U10M12004-OOP

Object Oriented
Programming

Chapter 9
Input and Output

Slides partially adapted from lecture
notes by Cay Horstmann

Dr. Helei Cui

24 May 2023

U10M12004-OOP

Contents

Dr. Helei Cui 2

• 9.1 I/O Streams
• 9.2 Reading and Writing Binary Data
• 9.3 Object I/O Streams and Serialization
• 9.4 Working with Files

U10M12004-OOP

Input/Output Streams

Dr. Helei Cui 3

• An input stream is a source of bytes.
• An output stream is a destination for bytes.

• These sources and destinations can be files, network connections,
and blocks of memory.

• InputStream and OutputStream are the basis for a
hierarchy of I/O classes.
• Reader and Writer are the basis for a hierarchy of I/O

classes for processing Unicode characters.
• Readers/writers process characters, not bytes.

• No relationship with java.util.stream.

U10M12004-OOP

9.1.1 Reading and Writing Bytes

Dr. Helei Cui 4

• The InputStream class has an abstract method:

• The read method returns a single byte (as an int) or -1 at the end
of input.

• It is more common to read bytes in bulk:

• Abstract read method can read a given number of bytes.
• The OutputStream class has an abstract method:

• You can write one byte or bytes from an array:

abstract int read()

byte[] bytes = in.readAllBytes();

abstract void write(int b)

byte[] values = . . .;
out.write(values);

U10M12004-OOP

9.1.1 Reading and Writing Bytes

Dr. Helei Cui 5

• The transferTo method transfers all bytes from an input
stream to an output stream:

• The available method lets you check the number of
bytes that are currently available for reading:

• When writing to a stream, close it when you are done:

• You can use one of many input/output classes that build
upon the basic InputStream and OutputStream classes.

in.transferTo(out);

int bytesAvailable = in.available();
if (bytesAvailable > 0) {

var data = new byte[bytesAvailable];
in.read(data);

}

out.close();

U10M12004-OOP

9.1.2 The Complete Stream Zoo

Dr. Helei Cui 6

• Java has a whole zoo of more than 60 different input/output
stream types.

Figure 2.1 Input and output stream hierarchy Figure 2.2 Reader and writer hierarchy

U10M12004-OOP

9.1.2 The Complete Stream Zoo

Dr. Helei Cui 7

• The InputStream and OutputStream classes let you read
and write individual bytes and arrays of bytes.

Figure 2.1 Input and output stream hierarchy

• To read and write strings and
numbers, you need more capable
subclasses. For example:

• DataInputStream and
DataOutputStream let you
read and write all the primitive
Java types in binary format.

• ZipInputStream and
ZipOutputStream let you read
and write files in the familiar ZIP
compression format.

U10M12004-OOP

9.1.2 The Complete Stream Zoo

Dr. Helei Cui 8

• For Unicode text, on the other hand, you can use subclasses
of the abstract classes Reader and Writer.

• The basic methods:

• The read method returns either
a UTF-16 code unit (as an integer
between 0 and 65535) or -1
when you have reached the end
of the file.

• The write method is called with
a Unicode code unit.

Figure 2.2 Reader and writer hierarchy

abstract int read()
abstract void write(int c)

U10M12004-OOP

9.1.2 The Complete Stream Zoo

Dr. Helei Cui 9

• There are four additional interfaces: Closeable, Flushable,
Readable, and Appendable.
• The classes InputStream, OutputStream, Reader, and Writer all

implement the Closeable interface.
• OutputStream and Writer implement the Flushable interface.

• The CharBuffer class has methods for sequential and random
read/write access.
• It represents an in-memory buffer or a memory-mapped file.

• The Appendable interface has two methods for appending single
characters and character sequences.

• The CharSequence interface describes basic properties of a sequence
of char values.
• It is implemented by String, CharBuffer, StringBuilder, and
StringBuffer.

• Of the input/output stream classes, only Writer implements
Appendable.

void close() throws IOException
void flush()
int read(CharBuffer cb)

Appendable append(char c)
Appendable append(CharSequence s)

U10M12004-OOP

9.1.2 The Complete Stream Zoo

Dr. Helei Cui 10

Figure 2.3 The Closeable, Flushable, Readable, and Appendable interfaces

U10M12004-OOP

9.1.3 Combining Input/Output Stream Filters

Dr. Helei Cui 11

• FileInputStream and FileOutputStream give you
input and output streams attached to a disk file.

• Can only read bytes and byte arrays from the object fin.

• DataInputStream can read numeric types. But it has no
method to get data from a file.

• You can combine the two responsibilities(retrieve bytes ;
assemble bytes).

var fin = new FileInputStream("employee.dat");
// pass the file name or full path name of the file

byte b = (byte) fin.read();

DataInputStream din = . . .;
double x = din.readDouble();

var fin = new FileInputStream("employee.dat");
var din = new DataInputStream(fin);
double x = din.readDouble();

U10M12004-OOP

9.1.3 Combining Input/Output Stream Filters

Dr. Helei Cui 12

• You can add multiple capabilities by nesting the filters. If
you want buffering and the data input methods for a file:

• Sometimes you’ll need to keep track of the intermediate
input streams when chaining them together.

• Reading and unreading are the only methods that apply to
a pushback input stream.

var din = new DataInputStream(
new BufferedInputStream(

new FileInputStream("employee.dat")));

var pbin = new PushbackInputStream(
new BufferedInputStream(

new FileInputStream("employee.dat")));

int b = pbin.read();//speculatively read the next byte

if (b != '<') pbin.unread(b);//throw it back

U10M12004-OOP

9.1.3 Combining Input/Output Stream Filters

Dr. Helei Cui 13

• The ability to mix and match filter classes to construct
useful sequences of input/output streams is flexible.
var zin = new ZipInputStream(new FileInputStream("employee.zip"));
var din = new DataInputStream(zin);

Figure 2.4
A sequence of
filtered input
streams

U10M12004-OOP

9.1.4 Text Input and Output

Dr. Helei Cui 14

• When saving data, you have the choice between binary and
text formats.
• When saving text strings, you need to consider the character

encoding.
• The OutputStreamWriter class turns an output stream

of Unicode code units into a stream of bytes.
• The InputStreamReader class turns an input stream

that contains bytes into Unicode code units.

• Use subclasses for processing strings and numbers.

var in = new InputStreamReader(System.in);

var in = new InputStreamReader(new FileInputStream("data.txt"),
StandardCharsets.UTF_8);

U10M12004-OOP

9.1.5 How to Write Text Output

Dr. Helei Cui 15

• PrintWriter class has methods to print strings and
numbers in text format.

• To write to a print writer, use the same print, println,
and printf methods that you used with System.out.
• You can use these methods to print numbers (int, short,

long, float, double), characters, boolean values, strings, and
objects.

var out = new PrintWriter("employee.txt", StandardCharsets.UTF_8);
//construct a PrintStream from a file name and a character encoding

String name = "Harry Hacker";
double salary = 75000;
out.print(name);
out.print(' ');
out.println(salary);

Harry Hacker 75000.0

U10M12004-OOP

9.1.5 How to Write Text Output

Dr. Helei Cui 16

• The println method adds the correct end-of-line character
for the target system ("\r\n" on Windows, "\n" on UNIX) to
the line.
• You can enable or disable autoflushing by using the
PrintWriter(Writer writer, boolean autoFlush) constructor:

• By default, autoflushing is not enabled.
• The print methods don’t throw exceptions.

• You can call the checkError method to see if something went
wrong with the output stream.

var out = new PrintWriter(
new OutputStreamWriter(

new FileOutputStream(“employee.txt”),
StandardCharsets.UTF_8), true); // autoflush

U10M12004-OOP

9.1.6 How to Read Text Input

Dr. Helei Cui 17

• The easiest way to process arbitrary text is the Scanner class.
You can construct a Scanner from any input stream.
• Can read a short text file into a string like this:

• If you want the file as a sequence of lines, call:

• If the file is large, process the lines lazily as a Stream<String>:

• Use a scanner to read tokens(strings separated by a delimiter).
The default delimiter is white space.
• You can change the delimiter to any regular expression.

var content = Files.readString(path, charset);

List<String> lines = Files.readAllLines(path, charset);

try (Stream<String> lines = Files.lines(path, charset)){
. . .

}

Scanner in = . . .;
in.useDelimiter("\\PL+");

U10M12004-OOP

9.1.6 How to Read Text Input

Dr. Helei Cui 18

• Calling the next method yields the next token:

• Alternatively, you can obtain a stream of all tokens as:

• The BufferedReader class has a lines method that yields
a Stream<String>.
• Unlike a Scanner, a BufferedReader has no methods for

reading numbers.

while (in.hasNext()){
String word = in.next();
. . .

}

Stream<String> words = in.tokens();

U10M12004-OOP

9.1.7 Saving Objects in Text Format

Dr. Helei Cui 19

• An example program that stores an array of Employee
records in a text file. We use a vertical bar (|) as our
delimiter.
• Here is a sample set of records:

• Write all fields, followed by either a | or, for the last field,
a newline character.

Harry Hacker|35500|1989-10-01
Carl Cracker|75000|1987-12-15
Tony Tester|38000|1990-03-15

public static void writeEmployee(PrintWriter out, Employee e){
out.println(e.getName() + "|" + e.getSalary() + "|" +

e.getHireDay());
}

U10M12004-OOP

9.1.7 Saving Objects in Text Format

Dr. Helei Cui 20

• Use a scanner to read each line and then split the line into
tokens with the String.split method.

• The parameter of the split method is a regular expression
describing the separator.

public static Employee readEmployee(Scanner in){
String line = in.nextLine();
String[] tokens = line.split("\\|");
String name = tokens[0];
double salary = Double.parseDouble(tokens[1]);
LocalDate hireDate = LocalDate.parse(tokens[2]);
int year = hireDate.getYear();
int month = hireDate.getMonthValue();
int day = hireDate.getDayOfMonth();
return new Employee(name, salary, year, month, day);

}

U10M12004-OOP

9.1.7 Saving Objects in Text Format

Dr. Helei Cui 21

• The static method first writes the length of the array,
then writes each record.

• The static method first reads in the length of the array,
then reads in each record.

• This turns out to be a bit tricky:

void writeData(Employee[] e, PrintWriter out)

Employee[] readData(Scanner in)

int n = in.nextInt();
in.nextLine(); // consume newline
var employees = new Employee[n];
for (int i = 0; i < n; i++) {

employees[i] = new Employee();
employees[i].readData(in);

}

U10M12004-OOP

9.1.8 Character Encodings

Dr. Helei Cui 22

• Java uses the Unicode standard for characters.
• The most common encoding is UTF-8, which encodes each

Unicode code point into a sequence of one to four bytes.

• Another common encoding is UTF-16.

U10M12004-OOP

9.1.8 Character Encodings

Dr. Helei Cui 23

• In addition to the UTF encodings, there are partial
encodings that cover a character range suitable for a given
user population (ISO 8859-1; Shift-JIS).
• There is no reliable way to automatically detect the

character encoding from a stream of bytes. You should
always explicitly specify the encoding.
• The StandardCharsets class has static variables of type
Charset for the character encodings.
• To obtain the Charset for another encoding, use the static
forName method:

• Use the Charset object when reading or writing text.
Charset shiftJIS = Charset.forName("Shift-JIS");

var str = new String(bytes, StandardCharsets.UTF_8);

U10M12004-OOP

Contents

Dr. Helei Cui 24

• 9.1 I/O Streams
• 9.2 Reading and Writing Binary Data
• 9.3 Object I/O Streams and Serialization
• 9.4 Working with Files

U10M12004-OOP

9.2.1 The DataInput and DataOutput interfaces

Dr. Helei Cui 25

• The DataOutput interface defines the following methods
for writing a number, a character, a boolean value, or a
string in binary format:

• The writeUTF method writes string data using a modified
version of the 8-bit Unicode Transformation Format.
• To read the data back in, use the following methods

defined in the DataInput interface:

writeChars writeFloat
writeByte writeDouble
writeInt writeChar
writeShort writeBoolean
writeLong writeUTF

readInt readDouble readShort readChar
readLong readBoolean readFloat readUTF

U10M12004-OOP

9.2.1 The DataInput and DataOutput interfaces

Dr. Helei Cui 26

• The DataInputStream class implements the DataInput
interface.
• To read binary data from a file, combine a
DataInputStream with a source of bytes such as a
FileInputStream:

• To write binary data, use the DataOutputStream class
that implements the DataOutput interface:

var in = new DataInputStream(new FileInputStream("employee.dat"));

var out = new DataOutputStream(new FileOutputStream("employee.dat"));

U10M12004-OOP

9.2.2 Random-Access Files

Dr. Helei Cui 27

• The RandomAccessFile class lets you read or write data
anywhere in a file.
• Specify the option by using the string "r" (for read access)

or "rw" (for read/write access).

• A random-access file has a file pointer that indicates the
position of the next byte to be read or written.
• The seek method can be used to set the file pointer to an

arbitrary byte position within the file.
• The getFilePointer method returns the current position of the

file pointer.
• The RandomAccessFile class implements both the DataInput

and DataOutput interfaces.

var in = new RandomAccessFile("employee.dat", "r");
var inOut = new RandomAccessFile("employee.dat", "rw");

U10M12004-OOP

9.2.2 Random-Access Files

Dr. Helei Cui 28

• An example program:

• If you want to modify the record and save it back into the
same location, set the file pointer back to the beginning of
the record:

• Use the length method to determine the total number of
bytes in a file:

long n = 3;
in.seek((n - 1) * RECORD_SIZE);
var e = new Employee();
e.readData(in);

in.seek((n - 1) * RECORD_SIZE);
e.writeData(out);

long nbytes = in.length(); // length in bytes
int nrecords = (int) (nbytes / RECORD_SIZE);

U10M12004-OOP

9.2.2 Random-Access Files

Dr. Helei Cui 29

• There are two helper methods to write and read strings of
a fixed size.
• The writeFixedString writes the specified number of

code units, starting at the beginning of the string.

• If there are too few code units, the method pads the string,
using zero values.

public static void writeFixedString(String s, int size,
DataOutput out) throws IOException {

for (int i = 0; i < size; i++) {
char ch = 0;
if (i < s.length()) ch = s.charAt(i);
out.writeChar(ch);

}
}

U10M12004-OOP

9.2.2 Random-Access Files

Dr. Helei Cui 30

• The readFixedString method uses the StringBuilder
class to read in a string.

• Place the writeFixedString and readFixedString
methods inside the DataIO helper class.

public static String readFixedString(int size, DataInput in)
throws IOException {

var b = new StringBuilder(size);
int i = 0;
var done = false;
while (!done && i < size) {

char ch = in.readChar();
i++;
if (ch == 0) done = true;
else b.append(ch);

}
in.skipBytes(2 * (size - i));
return b.toString();

}

U10M12004-OOP

9.2.2 Random-Access Files

Dr. Helei Cui 31

• To write a fixed-size record, simply write all fields in binary.

• Reading the data back is just as simple.

DataIO.writeFixedString(e.getName(), Employee.NAME_SIZE, out);
out.writeDouble(e.getSalary());
LocalDate hireDay = e.getHireDay();
out.writeInt(hireDay.getYear());
out.writeInt(hireDay.getMonthValue());
out.writeInt(hireDay.getDayOfMonth());

String name = DataIO.readFixedString(Employee.NAME_SIZE, in);
double salary = in.readDouble();
int y = in.readInt();
int m = in.readInt();
int d = in.readInt();

U10M12004-OOP

9.2.3 ZIP Archives

Dr. Helei Cui 32

• ZIP archives store one or more files in compressed format.
• Each ZIParchive has a header with information .
• Use a ZipInputStream to read a ZIP archive.
• The getNextEntry method returns an object of type ZipEntry

that describes the entry.
• Do not close zin until you read the last entry.

• A typical code sequence to read through a ZIP file:
var zin = new ZipInputStream(new FileInputStream(zipname));
ZipEntry entry;
while ((entry = zin.getNextEntry()) != null) {

// read the contents of zin
zin.closeEntry();

}
zin.close();

U10M12004-OOP

9.2.3 ZIP Archives

Dr. Helei Cui 33

• Use a ZipOutputStream to write a ZIP file.

• ZIP input streams are a good example of the power of the
stream abstraction.
• When you read data stored in compressed form, you don’t need to

worry that the data are being decompressed as they are being
requested.

• The source of the bytes in a ZIP stream need not be a file - the ZIP
data can come from a network connection.

var fout = new FileOutputStream("test.zip");
var zout = new ZipOutputStream(fout);
for all files {

var ze = new ZipEntry(filename);
zout.putNextEntry(ze);
// send data to zout
zout.closeEntry();

}
zout.close();

U10M12004-OOP

Contents

Dr. Helei Cui 34

• 9.1 I/O Streams
• 9.2 Reading and Writing Binary Data
• 9.3 Object I/O Streams and Serialization
• 9.4 Working with Files

U10M12004-OOP

9.3.1 Saving and Loading Serializable Objects

Dr. Helei Cui 35

• Use the writeObject method of the ObjectOutputStream
class to save an object.

• To read the objects back in, first get an ObjectInputStream
object:

• Then, use the readObject method to retrieve the objects in the same
order in which they were written:

var harry = new Employee("Harry Hacker", 50000, 1989, 10, 1);
var boss = new Manager("Carl Cracker", 80000, 1987, 12, 15);
out.writeObject(harry);
out.writeObject(boss);

var in = new ObjectInputStream(new FileInputStream("employee.dat"));

var e1 = (Employee) in.readObject();
var e2 = (Employee) in.readObject();

U10M12004-OOP

9.3.1 Saving and Loading Serializable Objects

Dr. Helei Cui 36

• The class must implement the Serializable interface
that save to an output stream and restore from an object
input stream:

• The Serializable interface has no methods.
• An ObjectOutputStream looks at all the fields of the

objects and saves their contents.
• What happens when one object is shared by several

objects as part of their state?

class Employee implements Serializable { . . . }

class Manager extends Employee {
private Employee secretary;
. . .

} // Assume that each manager has a secretary

U10M12004-OOP

9.3.1 Saving and Loading Serializable Objects

Dr. Helei Cui 37

var harry = new Employee("Harry Hacker", . . .);
var carl = new Manager("Carl Cracker", . . .);
carl.setSecretary(harry);
var tony = new Manager("Tony Tester", . . .);
tony.setSecretary(harry);

Figure 2.5
Two managers can share
a mutual employee.

U10M12004-OOP

9.3.1 Saving and Loading Serializable Objects

Dr. Helei Cui 38

• Each object is saved with the serial number - hence the
name object serialization for this mechanism.

Figure 2.6
An example of object serialization

U10M12004-OOP

9.3.2 Understanding the Object Serialization File Format

Dr. Helei Cui 39

• Object serialization saves object data in a particular file
format.

• What you should remember is this:
• The serialized format contains the types and data fields of all

objects.
• Each object is assigned a serial number.
• Repeated occurrences of the same object are stored as

references to that serial number.

U10M12004-OOP

Contents

Dr. Helei Cui 40

• 9.1 I/O Streams
• 9.2 Reading and Writing Binary Data
• 9.3 Object I/O Streams and Serialization
• 9.4 Working with Files

U10M12004-OOP

9.4.1 Paths

Dr. Helei Cui 41

• Path objects specify abstract path names (which may not
currently exist on disk).
• A Path is a sequence of directory names, optionally followed by

a file name.
• First component may be a root component such as / or C:\
• Path starting with a root is absolute. Other paths are relative.

• The static Paths.get method receives strings, which it
joins with the path separator of the default file system.
• Path separator is supplied for the default file system.

• / for a UNIX-like system
• \ for Windows

Path absolute = Paths.get("/home", "harry");
Path relative = Paths.get("myprog", "conf", "user.properties");

U10M12004-OOP

9.4.1 Paths

Dr. Helei Cui 42

• The get method can get a single string containing multiple
components.

• The call p.resolve(q) returns a path according to rules:
• If q is absolute, that's just q.
• Otherwise, first follow p, then follow q:

• A shortcut for the resolve method takes a string instead
of a path:

String baseDir = props.getProperty("base.dir");
// May be a string such as /opt/myprog or c:\Program Files\myprog
Path basePath = Paths.get(baseDir); // OK that baseDir has separators

Path workRelative = Paths.get("work");
Path workPath = basePath.resolve(workRelative);

Path workPath = basePath.resolve("work");

U10M12004-OOP

9.4.1 Paths

Dr. Helei Cui 43

• resolveSibling resolves against a path’s parent,
yielding a sibling path.

• The opposite of resolve is relativize, yielding “how to
get from p to q”.
• E.g., relativizing /home/harry against /home/fred/input.txt

yields ../fred/input.txt
• The normalize method removes . and .. or other

redundancies.
• Normalizing the path /home/harry/../fred/./input.txt yields

/home/fred/input.txt
• The toAbsolutePath method makes a path absolute.

• Such as /home/fred/input.txt or c:\Users\fred\input.txt

Path tempPath = workPath.resolveSibling("temp");
//if workPath is /opt/myapp/work, create /opt/myapp/temp

U10M12004-OOP

9.4.1 Paths

Dr. Helei Cui 44

• The Path interface has many useful methods for taking
paths apart.

• You can construct a Scanner from a Path object:

Path p = Paths.get("/home", "fred", "myprog.properties");
Path parent = p.getParent(); // the path /home/fred
Path file = p.getFileName(); // the path myprog.properties
Path root = p.getRoot(); // the path /

var in = new Scanner(Paths.get("/home/fred/input.txt"));

U10M12004-OOP

9.4.2 Reading and Writing Files

Dr. Helei Cui 45

• The Files class makes quick work of common file operations.

• You can read the content of a text file as:

• If you want the file as a sequence of lines, call:

• if you want to write a string, call:

• To append to a given file, use:

• You can also write a collection of lines with:

byte[] bytes = Files.readAllBytes(path);

var content = Files.readString(path, charset);

List<String> lines = Files.readAllLines(path, charset);

Files.write(path, content.getBytes(charset));

Files.write(path, content.getBytes(charset), StandardOpenOption.APPEND);

Files.write(path, lines, charset);

U10M12004-OOP

9.4.2 Reading and Writing Files

Dr. Helei Cui 46

• If your files are large or binary, you can still use the familiar
input/output streams or readers/writers:
InputStream in = Files.newInputStream(path);
OutputStream out = Files.newOutputStream(path);
Reader in = Files.newBufferedReader(path, charset);
Writer out = Files.newBufferedWriter(path, charset);

U10M12004-OOP

9.4.3 Creating Files and Directories

Dr. Helei Cui 47

• To create a new directory, call:

• To create intermediate directories as well, use:

• You can create an empty file with:

• There are convenience methods for creating a temporary
file or directory in a given or system-specific location.

Files.createDirectory(path); // the path must already exist

Files.createDirectories(path);

Files.createFile(path); //throws an exception if the file exists

Path newPath = Files.createTempFile(dir, prefix, suffix);
Path newPath = Files.createTempFile(prefix, suffix);
Path newPath = Files.createTempDirectory(dir, prefix);
Path newPath = Files.createTempDirectory(prefix);

U10M12004-OOP

9.4.4 Copying, Moving, and Deleting Files

Dr. Helei Cui 48

• To copy a file from one location to another, simply call:

• To move the file (that is, copy and delete the original), call:

• The copy or move will fail if the target exists.
• If overwrite an existing target, use the REPLACE_EXISTING option.
• If copy all file attributes, use the COPY_ATTRIBUTES option.

• Use the ATOMIC_MOVE option to specify that a move should
be atomic:
Files.move(fromPath, toPath, StandardCopyOption.ATOMIC_MOVE);

Files.copy(fromPath, toPath, StandardCopyOption.REPLACE_EXISTING,
StandardCopyOption.COPY_ATTRIBUTES);

Files.move(fromPath, toPath);

Files.copy(fromPath, toPath);

U10M12004-OOP

9.4.4 Copying, Moving, and Deleting Files

Dr. Helei Cui 49

• Copy an input stream to a Path:

• Copy a Path to an output stream:

• To delete a file, call:

• This method throws an exception if the file doesn’t exist.

• The deletion methods can also be used to remove an empty
directory.

boolean deleted = Files.deleteIfExists(path);

Files.delete(path);

Files.copy(fromPath, outputStream);

Files.copy(inputStream, toPath);

U10M12004-OOP

9.4.5 Getting File Information

Dr. Helei Cui 50

• The following static methods return a boolean value to
check a property of a path:
• exists
• isHidden
• isReadable, isWritable, isExecutable
• isRegularFile, isDirectory, isSymbolicLink

• The size method returns the number of bytes in a file.

• The getOwner method returns the owner of the file, as an
instance of java.nio.file.attribute.UserPrincipal.

long fileSize = Files.size(path);

U10M12004-OOP

9.4.5 Getting File Information

Dr. Helei Cui 51

• The basic file attributes are:
• The times at which the file was created, last accessed, and last

modified, as instances of the class java.nio.file.attribute.FileTime.
• Whether the file is a regular file, a directory, a symbolic link, or

none of these.
• The file size.
• The file key—an object of some class, specific to the file system,

that may or may not uniquely identify a file.
• To get these attributes, call:

• You can instead get an instance of PosixFileAttributes:

BasicFileAttributes attributes = Files.readAttributes(path,
BasicFileAttributes.class);

PosixFileAttributes attributes = Files.readAttributes(path,
PosixFileAttributes.class);

U10M12004-OOP

9.4.6 Visiting Directory Entries

Dr. Helei Cui 52

• The static Files.list method returns a Stream<Path>
that reads the entries of a directory.
• Since reading a directory involves a system resource that

needs to be closed, you should use a try block:

• Use the Files.walk method to process all descendants
of a directory.

try (Stream<Path> entries = Files.list(pathToDirectory)) {
. . .

}

try (Stream<Path> entries = Files.walk(pathToRoot)) {
// Contains all descendants, visited in depth-first order

}

U10M12004-OOP

9.4.6 Visiting Directory Entries

Dr. Helei Cui 53

• A sample traversal of the unzipped src.zip tree.

• Whenever the traversal yields a directory, it is entered
before continuing with its siblings.

java
java/nio
java/nio/DirectCharBufferU.java
java/nio/ByteBufferAsShortBufferRL.java
java/nio/MappedByteBuffer.java
. . .
java/nio/ByteBufferAsDoubleBufferB.java
java/nio/charset
java/nio/charset/CoderMalfunctionError.java
java/nio/charset/CharsetDecoder.java
java/nio/charset/UnsupportedCharsetException.java
java/nio/charset/spi
java/nio/charset/spi/CharsetProvider.java
. . .

U10M12004-OOP

9.4.6 Visiting Directory Entries

Dr. Helei Cui 54

• You can limit the depth of the tree that you want to visit by
calling Files.walk(pathToRoot, depth).
• Uses the Files.walk method to copy one directory to another:

• Cannot easily use the Files.walk method to delete a tree of
directories.
• As you need to delete the children before deleting the parent.

Files.walk(source).forEach(p -> {
try {

Path q = target.resolve(source.relativize(p));
if (Files.isDirectory(p))

Files.createDirectory(q);
else

Files.copy(p, q);
} catch (IOException ex) {

throw new UncheckedIOException(ex);
}

});

U10M12004-OOP

9.4.7 Using Directory Streams

Dr. Helei Cui 55

• If you need more fine-grained control over the traversal
process, use the Files.newDirectoryStream object.

• The try-with-resources block ensures that the directory
stream is properly closed.
• There is no specific order in which the directory entries are

visited.
• You can filter the files with a glob pattern:

try (DirectoryStream<Path> entries = Files.newDirectoryStream(dir)) {
for (Path entry : entries)

Process entries
}

try (DirectoryStream<Path> entries = Files.newDirectoryStream(dir, "*.java"))

U10M12004-OOP

9.4.7 Using Directory Streams

Dr. Helei Cui 56

U10M12004-OOP

9.4.7 Using Directory Streams

Dr. Helei Cui 57

• If you want to visit all descendants of a directory, call the
walkFileTree method instead and supply an object of
type FileVisitor. That object gets notified:
• When a file is encountered: FileVisitResult visitFile(T
path, BasicFileAttributes attrs)

• Before a directory is processed: FileVisitResult
preVisitDirectory(T dir, IOException ex)

• After a directory is processed: FileVisitResult
postVisitDirectory(T dir, IOException ex)

• When an error occurred trying to visit a file or directory, such as
trying to open a directory without the necessary permissions:
FileVisitResult visitFileFailed(T path,
IOException ex)

U10M12004-OOP

9.4.7 Using Directory Streams

Dr. Helei Cui 58

• In each case, you can specify whether you want to:
• Continue visiting the next file: FileVisitResult.CONTINUE
• Continue the walk, but without visiting the entries in this

directory: FileVisitResult.SKIP_SUBTREE
• Continue the walk, but without visiting the siblings of this file:
FileVisitResult.SKIP_SIBLINGS

• Terminate the walk: FileVisitResult.TERMINATE
• If any of the methods throws an exception, the walk is also

terminated, and that exception is thrown from the
walkFileTree method.
• A convenience class SimpleFileVisitor implements

the FileVisitor interface.

U10M12004-OOP

9.4.7 Using Directory Streams

Dr. Helei Cui 59

• Example: print out all subdirectories of a given directory:

• Override postVisitDirectory and visitFileFailed.
• The attributes of the path are passed as a parameter to the
preVisitDirectory and visitFile methods.

Files.walkFileTree(Paths.get("/"), new SimpleFileVisitor<Path>() {
public FileVisitResult preVisitDirectory(Path path,

BasicFileAttributes attrs) throws IOException{
System.out.println(path);
return FileVisitResult.CONTINUE;

}
public FileVisitResult postVisitDirectory(Path dir, IOException exc){

return FileVisitResult.CONTINUE;
}
public FileVisitResult visitFileFailed(Path path, IOException exc)

throws IOException{
return FileVisitResult.SKIP_SUBTREE;

}
});

U10M12004-OOP

9.4.7 Using Directory Streams

Dr. Helei Cui 60

• The FileVisitor interface are useful if you need to do
some work when entering or leaving a directory.

// Delete the directory tree starting at root
Files.walkFileTree(root, new SimpleFileVisitor<Path>() {

public FileVisitResult visitFile(Path file, BasicFileAttributes attrs)
throws IOException {

Files.delete(file);
return FileVisitResult.CONTINUE;

}
public FileVisitResult postVisitDirectory(Path dir, IOException e)

throws IOException {
if (e != null) throw e;
Files.delete(dir);
return FileVisitResult.CONTINUE;

}
});

U10M12004-OOP

9.4.8 ZIP File Systems

Dr. Helei Cui 61

• The Paths class looks up paths in the default file system -
the files on the user’s local disk.
• If zipname is the name of a ZIP file, then the call:

• Copy a file out of that archive if you know its name:

• To list all files in a ZIP archive, walk the file tree:

FileSystem fs = FileSystems.newFileSystem(Paths.get(zipname), null);

FileSystem fs = FileSystems.newFileSystem(Paths.get(zipname), null);
Files.walkFileTree(fs.getPath("/"), new SimpleFileVisitor<Path>(){

public FileVisitResult visitFile(Path file, BasicFileAttributes
attrs) throws IOException{

System.out.println(file);
return FileVisitResult.CONTINUE;

}
});

Files.copy(fs.getPath(sourceName), targetPath);

U10M12004-OOP

Recap

Dr. Helei Cui 62

• 9.1 I/O Streams
• 9.2 Reading and Writing Binary Data
• 9.3 Object I/O Streams and Serialization
• 9.4 Working with Files

