.§.
2

fa~>)
o
o
_.g)
e b &
e TN
(=)
— -

Yiltz4H3Y

NORTHWESTERN POLYTECHNICAL UNIVERSITY

L
" 0 011

o .
=,

Lo >rooce> LD
L LD = — O O — O —

eeoe -

y 0 =0 o m wTo—- oo o= S oaE N

Object Oriented
Programming

c - D - D -0 -
—_ 0 =00 = - 000 = - w0000 =0 = —-D0

——
o

—— O - O - C
C O =0 = =00 =-=00=—=00 - =

10
0,
1
0
0
1
0
0
1
1
0
1
0
0
0
1

Chapter 9
Input and Output

p—
S
e

~
L

-

O = D = LD
-

—~
./
e —

-

=
i e e gt o P el W VOO W

Dr. Helei Cui
24 May 2023

oees—~~080—~~T0C0O0O—T00 008

o

1
0
1
1
1
0
0
1
1

o
o
[—
— —

o

o O -
—_— 0 -

Slides partially adapted from lecture
notes by Cay Horstmann

i -

(=)
o
S°

-
-_— 0 -

-OdO:-:o—o—oo—J-o‘-',“-

c:-o'--o-c-—c-c.‘,--—co-.n.-‘q-‘o.

—
~’

-
p—

5 NORTHWESTERN POLYTECHNICAL UNIVERSITY

Contents

 9.11/0 Streams
* 9.2 Reading and Writing Binary Data

* 9.3 Object I/O Streams and Serialization
* 9.4 Working with Files

U10M12004-0O0P Dr. Helei Cui 2

“‘&;i*’% NORTHWESTERN POLYTECHNICAL UNIVERSITY

Input/Output Streams

* An input stream is a source of bytes.

* An output stream is a destination for bytes.

 These sources and destinations can be files, network connections,
and blocks of memory.

* InputStreamand OutputStream are the basis for a
hierarchy of 1/0 classes.

 Reader and Writer are the basis for a hierarchy of 1/0
classes for processing Unicode characters.

* Readers/writers process characters, not bytes.

* No relationship with java.util.stream.

U10M12004-00P Dr. Helei Cui 3

g /A J [. > T
5) NORTHWESTERN POLYTECHNICAL UNIVERSITY

o

g

9.1.1 Reading and Writing Bytes

* The InputStream class has an abstract method:

abstract int read()

* The read method returns a single byte (as an int) or -1 at the end
of input.

* Itis more common to read bytes in bulk:

byte[] bytes = in.readAllBytes();
e Abstract read method can read a given number of bytes.
* The OutputStream class has an abstract method:

abstract void write(int b)

* You can write one byte or bytes from an array:

byte[] values = . . .;

out.write(values);

Uu10M12004-00P Dr. Helei Cui 4

F55 NORTHWESTERN POLYTECHNICAL UNIVERSITY

9.1.1 Reading and Writing Bytes

 The transferTo method transfers all bytes from an input
stream to an output stream:

in.transferTo(out);

* The available method lets you check the number of
bytes that are currently available for reading:

int bytesAvailable = in.available();
if (bytesAvailable > 0) {

var data = new byte[bytesAvailable];
in.read(data);

* When writing to a stream, close it when you are done:

* You can use one of many input/output classes that build
upon the basic InputStreamand OutputStream classes.

Uu10M12004-00P Dr. Helei Cui 5

9.1.2 The Complete Stream Zoo

GlzLE

NORTHWESTERN POLYTECHNICAL UNIVERSITY

* Java has a whole zoo of more than 60 different input/output

stream types.

InputStream |

[[I I I I I

Audio ByteArray File Piped Filter Sequence StringBuffer Object
InputStream InputStream InputStream InputStream InputStream InputStream
T
i
|

InputStream InputStream |
1
I [I I I I I I I y

Buffered Checked Cipher Digest Inflater LineNumber Plogiese Pushback Data <<interface>>
[' Monitor
InputStream InputStream InputSts IApuiStrear InputStream Objectinput

InputStream

<<interface>>
Datalnput
- o <cinterface>>
DataOutput

T

Random
AccessFile &1
i

<<interface>>
ObjectOutput

[

[sronras
5

™
I [I [I I L

OulpuISIveam]
GzIP Zip
Outputstream [f | OutputStream
e

OutputStream

Figure 2.1 Input and output stream hierarchy

Uu10M12004-00P

Reader

Buffered CharArray FilterReader InputStream PipedReader StringReader
Reader Reader Reader
¥ ¥ Y
LineNumber LS FileReader
Reader Reader
==
Writer
Buffered CharArray FilterWriter OutputStrean PipedWriter PrintWriter StringWriter
Writer Writer Writer

FileWriter

\

Figure 2.2 Reader and writer hierarchy

Dr. Helei Cui

NORTHWESTERN POLYTECHNICAL UNIVERSITY

o

9.1.2 The Complete Stream Zoo

* The InputStreamand OutputStream classes let you read
and write individual bytes and arrays of bytes.

 To read and write strings and | EL
numbers, you need more capable N = = oz Mol e s
subclasses. For example: EEE e e

 DataInputStreamand = [| | o || i r—LT eeeeeeeeee e Bz, H
DataOutputStream let you o (e e
read and write all the primitive — = e
Java types in binary format. p Ehee

e ZipInputStreamand = o= —
ZipOutputStreamlet you read e | T (NG =
and write files in the familiar ZIP 1 gaaEaRsan
compression format. e e e e

ttttttttttt

uuuuuuuuuuuu

U10M12004-00P Dr.Heie Figure 2.1 Input and output stream hierarchy

@) Fhtzixs
;;*’5 NORTHWESTERN POLYTECHNICAL UNIVERSITY

o

9.1.2 The Complete Stream Zoo

* For Unicode text, on the other hand, you can use subclasses
of the abstract classes Reader and Writer.

Eufiered Charfnay FilterReader InpuiStream PipedReader StringReader
Reader Reader Reader
= T
LineNumber Pushback FileReader B
Reader Read! |
T e—— E———

| | | |

Buffered CharArray FilterWriter OutputStream PipedWriter
Writer Writer Writer I

Figure 2.2 Reader and writer hierarchy

Dr. Helei Cui

The basic methods:

abstract int read()
abstract void write(int c)

The read method returns either
a UTF-16 code unit (as an integer
between 0 and 65535) or -1
when you have reached the end
of the file.

The write method is called with
a Unicode code unit.

@) ¥izirg
;;)"5 NORTHWESTERN POLYTECHNICAL UNIVERSITY

o

9.1.2 The Complete Stream Zoo

* There are four additional interfaces: Closeable, Flushable,
Readable, and Appendable.

e The classes InputStream, OutputStream, Reader, and Writer all
implement the Closeable interface.

e QutputStreamand Writer implement the Flushable interface.

void close() throws IOException Appendable append(char c)

void flush() Appendable append(CharSequence s)
int read(CharBuffer cb)

 The CharBuffer class has methods for sequential and random
read/write access.

* It represents an in-memory buffer or a memory-mapped file.

* The Appendable interface has two methods for appending single
characters and character sequences.

 The CharSequence interface describes basic properties of a sequence
of char values.

* |tisimplemented by String, CharBuffer, StringBuilder, and
StringBuffer.

* Of the input/output stream classes, only Writer implements
Appendable.

Uu10M12004-00P Dr. Helei Cui 9

o) j ;,[£ f{Jﬁ =
& NORTHWESTERN POLYTECHNICAL UNIVERSITY

ez

9.1.2 The Complete Stream Zoo

A

1

1

1

1

1
<<interface>> Bt o cccccccccaa . b
B Writer 1

A
1
]
)
T
1

Figure 2.3 The Closeable, Flushable, Readable, and Appendable interfaces

Uu10M12004-00P Dr. Helei Cui 10

g (A J [. > T
3, NORTHWESTERN POLYTECHNICAL UNIVERSITY

9.1.3 Combining Input/Output Stream Fil’zérs

* FileInputStreamand FileOutputStream give you
input and output streams attached to a disk file.

var fin = new FileInputStream("employee.dat");

// pass the file name or full path name of the file
e Can only read bytes and byte arrays from the object fin.

byte b = (byte) fin.read();

* DataInputStream can read numeric types. But it has no
method to get data from a file.

DatalnputStream din = . . .;

double x = din.readDouble();

* You can combine the two responsibilities(retrieve bytes ;
assemble bytes).

var fin = new FileInputStream("employee.dat");

var din new DataInputStream(fin);
double x = din.readDouble();

Uu10M12004-00P Dr. Helei Cui 11

@) ¥ltz4H2
g /A J [. > T
3 NORTHWESTERN POLYTECHNICAL UNIVERSITY

53 >

9.1.3 Combining Input/Output Stream Filters

* You can add multiple capabilities by nesting the filters. If
you want buffering and the data input methods for a file:

var din = new DataInputStream(

new BufferedInputStream(
new FileInputStream("employee.dat")));

* Sometimes you’ll need to keep track of the intermediate
input streams when chaining them together.

var pbin = new PushbackInputStream(
new BufferedInputStream(
new FileInputStream("employee.dat")));

int b = pbin.read();//speculatively read the next byte

if (b != '<') pbin.unread(b);//throw it back

* Reading and unreading are the only methods that apply to
a pushback input stream.

Uu10M12004-00P Dr. Helei Cui 12

@) ¥izirg
)"5 NORTHWESTERN POLYTECHNICAL UNIVERSITY

£33

9.1.3 Combining Input/Output Stream Filters

* The ability to mix and match filter classes to construct
useful sequences of input/output streams is flexible.

var zin = new ZipInputStream(new FileInputStream("employee.zip"));

var din = new DataInputStream(zin);

Data | Zip | File ‘

Ll
read 1

Figure 2.4

A sequence of
filtered input
streams

. read

uioM Dr. Helei Cui 13

@) ¥izirg
;;*’5 NORTHWESTERN POLYTECHNICAL UNIVERSITY

o

9.1.4 Text Input and Output

* When saving data, you have the choice between binary and
text formats.

* When saving text strings, you need to consider the character
encoding.

* The OutputStreamWriter class turns an output stream
of Unicode code units into a stream of bytes.

* The InputStreamReader class turns an input stream
that contains bytes into Unicode code units.

var in = new InputStreamReader(System.in);

var in = new InputStreamReader(new FileInputStream("data.txt"),
StandardCharsets.UTF_8);

e Use subclasses for processing strings and numbers.

Uu10M12004-00P Dr. Helei Cui 14

g /A J [. > T
5) NORTHWESTERN POLYTECHNICAL UNIVERSITY

o

g

9.1.5 How to Write Text Output

* PrintWriter class has methods to print strings and
numbers in text format.

var out = new PrintWriter("employee.txt", StandardCharsets.UTF_8);

//construct a PrintStream from a file name and a character encoding

* To write to a print writer, use the same print, println,
and printf methods that you used with System. out.

* You can use these methods to print numbers (int, short,
long, float, double), characters, boolean values, strings, and
objects.

String name = "Harry Hacker";
double salary = 75000;
out.print(name);

out.print(' ');
out.println(salary);

Harry Hacker 75000.0

Uu10M12004-00P Dr. Helei Cui 15

@) TMHtzi)Yd
"{‘%;;)‘% NORTHWESTERN POLYTECHNICAL UNIVERSITY

9.1.5 How to Write Text Output

* The println method adds the correct end-of-line character
for the target system ("\r\n" on Windows, "\n" on UNIX) to
the line.

* You can enable or disable autoflushing by using the
PrintWriter(Writer writer, boolean autoFlush) constructor:

var out = new (
new OutputStreamWriter(

new FileOutputStream(“employee.txt”),
StandardCharsets.UTF_8), true); // autoflush

* By default, autoflushing is not enabled.

* The print methods don’t throw exceptions.

* You can call the checkError method to see if something went
wrong with the output stream.

Uu10M12004-00P Dr. Helei Cui 16

@) ¥HzirE
g /A Y [. v T
Ji) NORTHWESTERN POLYTECHNICAL UNIVERSITY

o 3

9.1.6 How to Read Text Input

* The easiest way to process arbitrary text is the Scanner class.
You can construct a Scanner from any input stream.

e Can read a short text file into a string like this:

var content = Files.readString(path, charset);

If you want the file as a sequence of lines, call:

List<String> lines = Files.readAlllLines(path, charset);

If the file is large, process the lines lazily as a Stream<String>:
try (Stream<String> lines = Files.lines(path, charset)){

}

e Use a scanner to read tokens(strings separated by a delimiter).
The default delimiter is white space.

* You can change the delimiter to any regular expression.

Scanner in = . . .;

in.useDelimiter("\\PL+");

Uu10M12004-00P Dr. Helei Cui 17

o ;;)_* NORTHWESTERN POLYTECHNICAL UNIVERSITY

9.1.6 How to Read Text Input

e Calling the next method yields the next token:

while (in.hasNext()){
String word = in.next();

* Alternatively, you can obtain a stream of all tokens as:

Stream<String> words = in.tokens();

 The BufferedReader class has a lines method that yields
a Stream<String>.

* Unlike a Scanner, a BufferedReader has no methods for
reading numbers.

Uu10M12004-00P Dr. Helei Cui 18

@) ¥ltz4H2
g /A J [. > T
3 NORTHWESTERN POLYTECHNICAL UNIVERSITY

53 >

9.1.7 Saving Objects in Text Format

* An example program that stores an array of Employee
records in a text file. We use a vertical bar (|) as our
delimiter.

* Here is a sample set of records:
Harry Hacker|35500|1989-10-01

Carl Cracker|75000|1987-12-15
Tony Tester|38000|1990-083-15

» Write all fields, followed by either a | or, for the last field,
a newline character.

public static void writeEmployee(PrintWriter out, Employee e){
out.println(e.getName() + "|" + e.getSalary() + "|" +

e.getHireDay());

Uu10M12004-00P Dr. Helei Cui 19

3, NORTHWESTERN POLYTECHNICAL UNIVERSITY

* Use a scanner to read each line and then split the line into
tokens with the String.split method.

public static Employee readEmployee(Scanner in){
String line = in.nextlLine();
String[] tokens = line. 5
String name = tokens[@];
double salary = Double.parseDouble(tokens[1]);
LocalDate hireDate = LocalDate.parse(tokens[2]);

int year = hireDate.getYear();

int month = hireDate.getMonthValue();

int day = hireDate.getDayOfMonth();

return new Employee(name, salary, year, month, day);

* The parameter of the split method is a regular expression
describing the separator.

Uu10M12004-00P Dr. Helei Cui 20

3 NORTHWESTERN POLYTECHNICAL UNIVERSITY

53 3

9.1.7 Saving Objects in Text Format

* The static method first writes the length of the array,
then writes each record.

void writeData(Employee[] e, PrintWriter out)

* The static method first reads in the length of the array,
then reads in each record.

Employee[] readData(Scanner in)

* This turns out to be a bit tricky:

int n = in.nextInt();
in.nextLine(); // consume newline
var employees = new Employee[n];

for (int i = 0; 1 < n; i++) {
employees[i] = new Employee();
employees[i].readData(in);

Uu10M12004-00P Dr. Helei Cui 21

9.1.8 Character Encodings

e Java uses the Unicode standard for characters.

* The most common encoding is UTF-8, which encodes each
Unicode code point into a sequence of one to four bytes.

Table 2.1 UTF-8 Encoding

Character Range Encoding

8. . .7F 0a5asa,2333,3,3g

80. . .7FF 1103;g303g373s 103s34333;3:3g

800. . .FFFF 1116a,53,43133;; 103,,3,539353;35 10a53,4333,3,3

16000. . .16FFFF 11110a,53193;5 10a,7815315814313817 1031,31939333;35 10a53,333,3,3

* Another common encoding is UTF-16.
Table 2.2 UTF-16 Encoding

Character Range Encoding
8. . .FFFF d15d14d13917d]131939dg d735d5d43d337d;dg
10008. . .10FFFF 119119b19b13 bublsalsauauauauale 1191113933 d;dgdsdydzdyd;dg

where bygbigbisbis = axear0a18317216 - 1

Uu10M12004-00P Dr. Helei Cui 22

@) ¥ ltziHNY
":&1;)‘* NORTHWESTERN POLYTECHNICAL UNIVERSITY

9.1.8 Character Encodings

* In addition to the UTF encodings, there are partial
encodings that cover a character range suitable for a given
user population (ISO 8859-1; Shift-JIS).

* There is no reliable way to automatically detect the
character encoding from a stream of bytes. You should
always explicitly specify the encoding.

 The StandardCharsets class has static variables of type
Charset for the character encodings.

e To obtain the Charset for another encoding, use the static
forName method:

Charset shiftJIS = Charset.forName("Shift-JIS");

e Use the Charset object when reading or writing text.

var str = new String(bytes, StandardCharsets.UTF_8);

Uu10M12004-00P Dr. Helei Cui 23

Contents

* 9.11/0 Streams

* 9.2 Reading and Writing Binary Data
* 9.3 Object I/O Streams and Serialization
* 9.4 Working with Files

Uu10M12004-00P Dr. Helei Cui

24

@) whzi)d
9.2.1 The Datalnput and DataOutput interfaces

a

* The DataOutput interface defines the following methods
for writing a number, a character, a boolean value, or a
string in binary format:

writeChars writeFloat
writeByte writeDouble
writelnt writeChar
writeShort writeBoolean
writelLong writeUTF

* The writeUTF method writes string data using a modified
version of the 8-bit Unicode Transformation Format.

* To read the data back in, use the following methods
defined in the DataInput interface:

readInt readDouble readShort readChar

readLong readBoolean readFloat readUTF

Uu10M12004-00P Dr. Helei Cui 25

@) whzi)d
9.2.1 The Datalnput and DataOutput interfaces

a

* The DataInputStream class implements the Datalnput
interface.

* To read binary data from a file, combine a
DataInputStream with a source of bytes such as a
FileInputStream:

var in = new DataInputStream(new FileInputStream("employee.dat"));

* To write binary data, use the DataOutputStream class
that implements the DataOutput interface:

var out = new DataOutputStream(new FileOutputStream("employee.dat"));

Uu10M12004-00P Dr. Helei Cui 26

9.2.2 Random-Access Files

* The RandomAccessFile class lets you read or write data
anywhere in a file.

e Specify the option by using the string "r" (for read access)
or "rw" (for read/write access).

var in = new RandomAccessFile("employee.dat", "r");

var inOut = new RandomAccessFile("employee.dat", "rw");

* A random-access file has a file pointer that indicates the
position of the next byte to be read or written.

* The seek method can be used to set the file pointer to an
arbitrary byte position within the file.

* The getFilePointer method returns the current position of the
file pointer.

 The RandomAccessFile class implements both the DataInput
and DataOutput interfaces.

Uu10M12004-00P Dr. Helei Cui 27

) Z44 ¥
g /A Y [. v T
izt NORTHWESTERN POLYTECHNICAL UNIVERSITY

o 3

9.2.2 Random-Access Files

* An example program:

long n =
in.seek((n - 1) * RECORD_SIZE);

var e = new Employee();
e.readData(in);

* If you want to modify the record and save it back into the
same location, set the file pointer back to the beginning of
the record:

in.seek((n - 1) * RECORD_SIZE);
e.writeData(out);

* Use the 1length method to determine the total number of
bytes in a file:
long nbytes = in.length(); // length in bytes

int nrecords = (int) (nbytes / RECORD_SIZE);

Uu10M12004-00P Dr. Helei Cui 28

) Z44 ¥
g /A Y [. v T
izt NORTHWESTERN POLYTECHNICAL UNIVERSITY

o 3

9.2.2 Random-Access Files

* There are two helper methods to write and read strings of
a fixed size.

* The writeFixedString writes the specified number of
code units, starting at the beginning of the string.

public static void writeFixedString(String s, int size,
DataOutput out) throws IOException {
for (int i = 0; i < size; i++) {
char ch = 0;

if (i < s.length()) ch = s.charAt(i);
out.writeChar(ch);

* |f there are too few code units, the method pads the string,
using zero values.

Uu10M12004-00P Dr. Helei Cui 29

: A Y [A Rl
EZ] 3 NORTHWESTERN POLYTECHNICAL UNIVERSITY

> 3,

9.2.2 Random-Access Files

* The readFixedString method uses the StringBuilder
class to read in a string.

public static String readFixedString(int size, DataInput in)
throws IOException {
var b = new StringBuilder(size);
int 1 = 0;
var done = false;
while (!done && i < size) {
char ch = in.readChar();

i++;
if (ch == @) done = true;
else b.append(ch);
}
in.skipBytes(2 * (size - i));
return b.toString();

* Place thewriteFixedString and readFixedString
methods inside the DataIO helper class.

Uu10M12004-00P Dr. Helei Cui 30

9.2.2 Random-Access Files

* To write a fixed-size record, simply write all fields in binary.

DataIO.writeFixedString(e.getName(), Employee.NAME SIZE, out);
out.writeDouble(e.getSalary());

LocalDate hireDay = e.getHireDay();
out.writeInt(hireDay.getYear());
out.writeInt(hireDay.getMonthValue());
out.writeInt(hireDay.getDayOfMonth());

* Reading the data back is just as simple.

String name = DatalO.readFixedString(Employee.NAME_SIZE, in);
double salary = in.readDouble();

int y = in.readInt();
int m in.readInt();
int d in.readInt();

Uu10M12004-00P Dr. Helei Cui

31

) Z44 ¥
g /A Y [. v T
izt NORTHWESTERN POLYTECHNICAL UNIVERSITY

o 3

9.2.3 ZIP Archives

* ZIP archives store one or more files in compressed format.
e Each ZIParchive has a header with information .
 UseaZipInputStreamtoread a ZIP archive.

* The getNextEntry method returns an object of type ZipEntry
that describes the entry.

* Do not close zin until you read the last entry.
* A typical code sequence to read through a ZIP file:

var zin = new ZipInputStream(new FileInputStream(zipname));
ZipEntry entry;
while ((entry = zin.getNextEntry()) != null) {

// read the contents of zin
zin.closeEntry();

}

zin.close();

Uu10M12004-00P Dr. Helei Cui 32

@) ¥HzirE
g /A Y [. v T
;;) NORTHWESTERN POLYTECHNICAL UNIVERSITY

o 3

9.2.3 ZIP Archives

* Use a ZipOutputStream to write a ZIP file.

var fout = new FileOutputStream("test.zip");
var zout = new ZipOutputStream(fout);
for all files {
var ze = new ZipEntry(filename);
zout.putNextEntry(ze);

// send data to zout
zout.closeEntry();

}

zout.close();

e ZIP input streams are a good example of the power of the
stream abstraction.

* When you read data stored in compressed form, you don’t need to

worry that the data are being decompressed as they are being
requested.

* The source of the bytes in a ZIP stream need not be a file - the ZIP
data can come from a network connection.

Uu10M12004-00P Dr. Helei Cui 33

Fhzise
Contents

* 9.11/0 Streams
* 9.2 Reading and Writing Binary Data

* 9.3 Object I/O Streams and Serialization
* 9.4 Working with Files

Uu10M12004-00P Dr. Helei Cui 34

3 NORTHWESTERN POLYTECHNICAL UNIVERSITY

53 3

9.3.1 Saving and Loading Serializable Objects

* Use the writeObject method of the ObjectOutputStream
class to save an object.

var harry = new Employee("Harry Hacker", 50000, 1989, 10, 1);
var boss = new Manager("Carl Cracker", 80000, 1987, 12, 15);

out.writeObject(harry);
out.writeObject(boss);

* To read the objects back in, first get an ObjectInputStream
object:

var in = new ObjectInputStream(new FileInputStream("employee.dat"));

* Then, use the readObject method to retrieve the objects in the same
order in which they were written:

(Employee) in.readObject();
(Employee) in.readObject();

var el
var e2

Uu10M12004-00P Dr. Helei Cui 35

'&@)_'5 NORTHWESTERN POLYTECHNICAL UNIVERSITY

9.3.1 Saving and Loading Serializable ObjeEts

* The class must implement the Serializable interface
that save to an output stream and restore from an object
input stream:

class Employee {. ..}

* The Serializable interface has no methods.

* An ObjectOutputStreamlooks at all the fields of the
objects and saves their contents.

 What happens when one object is shared by several
objects as part of their state?

class Manager extends Employee {
private Employee secretary;

} // Assume that each manager has a secretary

Uu10M12004-00P Dr. Helei Cui 36

S /YH

&5 3 s % NORTHWESTERN POLYTECHNICAL UNIVERSITY

9.3.1 Saving and Loading Serializable Objects

var harry = new Employee("Harry Hacker",
var carl = new Manager("Carl Cracker",

carl.setSecretary(harry);
var tony = new Manager("Tony Tester",
tony.setSecretary(harry);

Employee

'\

name = |["Harry Hacker"

staff = | %

Manager

name = | "Carl Cracker"

Figure 2.5
Two managers can share
a mutual employee.

Manager

name = | "Tony Tester"

Uu10M12004-00P Dr. Helei Cui 37

@) ¥izirg
o ;)% NORTHWESTERN POLYTECHNICAL UNIVERSITY

O3

9.3.1 Saving and Loading Serializable Objects

e Each object is saved with the serial number - hence the
name object serialization for this mechanism.

Memory

Employee

File

serial number = 1
type = Employee
name = "Harry Hacker"

name = |"Harry Hacker"

serial number = 2
type = Manager

name = "Carl Cracker"
secretary = object 1

Manager

name = | "Carl Cracker"

serial number = 3
type = Manager
name = "Tony Tester"
secretary = object 1

secretary = | I

Manager

name = | "Tony Tester"

Uu10M12004-00P

Dr. Helei Cui

Figure 2.6
An example of object serialization

38

@) THFIHS
9.3.2 Understanding the Object Serialization File Format

* Object serialization saves object data in a particular file
format.

* What you should remember is this:

* The serialized format contains the types and data fields of all
objects.

* Each object is assigned a serial number.

* Repeated occurrences of the same object are stored as
references to that serial number.

U10M12004-00P Dr. Helei Cui 39

@) T zire
Contents

* 9.11/0 Streams
* 9.2 Reading and Writing Binary Data

* 9.3 Object I/O Streams and Serialization
* 9.4 Working with Files

Uu10M12004-00P Dr. Helei Cui 40

@) ¥t ziH¥
’k:%l‘i)"% NORTHWESTERN POLYTECHNICAL UNIVERSITY

9.4.1 Paths

e Path objects specify abstract path names (which may not
currently exist on disk).

A Pathis a sequence of directory names, optionally followed by
a file name.

 First component may be a root component such as / or C:\
e Path starting with a root is absolute. Other paths are relative.

Path absolute Paths.get("/home", "harry");

Path relative = Paths.get("myprog", "conf", "user.properties");

* The static Paths.get method receives strings, which it
joins with the path separator of the default file system.

e Path separator is supplied for the default file system.
 /for a UNIX-like system
 \ for Windows

Uu10M12004-00P Dr. Helei Cui 41

) Z44 ¥
g /A Y [. v T
izt NORTHWESTERN POLYTECHNICAL UNIVERSITY

o 3

9.4.1 Paths

* The get method can get a single string containing multiple
components.
String baseDir = props.getProperty("base.dir");

// May be a string such as /opt/myprog or c:\Program Files\myprog
Path basePath = Paths.get(baseDir); // OK that baseDir has separators

* Thecallp.resolve(q) returns a path according to rules:
* If g is absolute, that's just q.

* Otherwise, first follow p, then follow q:

Path workRelative = Paths.get("work");
Path workPath = basePath.resolve(workRelative);

* A shortcut for the resolve method takes a string instead
of a path:

Path workPath = basePath.resolve("work");

Uu10M12004-00P Dr. Helei Cui 42

@) T ltzir¥
1‘.‘&;;)‘% NORTHWESTERN POLYTECHNICAL UNIVERSITY

9.4.1 Paths

* resolveSibling resolves against a path’s parent,
vielding a sibling path.

Path tempPath = workPath.resolveSibling("temp");

//if workPath is /opt/myapp/work, create /opt/myapp/temp

* The opposite of resolve is relativize, yielding “how to
get from p to q”.

* E.g., relativizing /home/harry against /home/fred/input.txt
yields ../fred/input.txt

e The normalize method removes . and .. or other
redundancies.

* Normalizing the path /home/harry/../fred/./input.txt yields
/home/fred/input.txt

 The toAbsolutePath method makes a path absolute.
* Such as /home/fred/input.txt or c:\Users\fred\input.txt

Uu10M12004-00P Dr. Helei Cui 43

9.4.1 Paths

 The Path interface has many useful methods for taking
paths apart.

Path p = Paths.get("/home", "fred", "myprog.properties");
Path parent = p.getParent(); // the path /home/fred

Path file = p.getFileName(); // the path myprog.properties
Path root = p.getRoot(); // the path /

* You can construct a Scanner from a Path object:

var in = new Scanner(Paths.get("/home/fred/input.txt"));

Uu10M12004-00P Dr. Helei Cui 44

) Z44 ¥
g /A Y [. v T
izt NORTHWESTERN POLYTECHNICAL UNIVERSITY

o 3

9.4.2 Reading and Writing Files

* The Files class makes quick work of common file operations.

byte[] bytes = Files.readAllBytes(path);

* You can read the content of a text file as:

var content = Files.readString(path, charset);

If you want the file as a sequence of lines, call:

List<String> lines = Files.readAlllLines(path, charset);

if you want to write a string, call:

Files.write(path, content.getBytes(charset));

To append to a given file, use:

Files.write(path, content.getBytes(charset), StandardOpenOption.APPEND);

You can also write a collection of lines with:

Files.write(path, lines, charset);

Uu10M12004-00P Dr. Helei Cui 45

) Z44 ¥
g /A Y [. v T
izt NORTHWESTERN POLYTECHNICAL UNIVERSITY

o 3

9.4.2 Reading and Writing Files

* |f your files are large or binary, you can still use the familiar
input/output streams or readers/writers:

InputStream in = Files.newInputStream(path);
OutputStream out = Files.newOutputStream(path);

Reader in = Files.newBufferedReader(path, charset);
Writer out = Files.newBufferedWriter(path, charset);

Uu10M12004-00P Dr. Helei Cui 46

) Z44 ¥
g /A Y [. v T
izt NORTHWESTERN POLYTECHNICAL UNIVERSITY

o 3

9.4.3 Creating Files and Directories

To create a new directory, call:

Files.createDirectory(path); // the path must already exist

To create intermediate directories as well, use:

Files.createDirectories(path);

You can create an empty file with:

Files.createFile(path); //throws an exception if the file exists

There are convenience methods for creating a temporary

file or directory in a given or system-specific location.

newPath
newPath

newPath
newPath

createTempFile(dir, prefix, suffix);
createTempFile(prefix, suffix);
createTempDirectory(dir, prefix);
createTempDirectory(prefix);

Uu10M12004-00P

Dr. Helei Cui 47

o) NORTHWESTERN POLYTECHNICAL UNIVERSITY

9.4.4 Copying, Moving, and Deletingﬁiles

* To copy a file from one location to another, simply call:

Files.copy(fromPath, toPath);

* To move the file (that is, copy and delete the original), call:
Files.move(fromPath, toPath);

* The copy or move will fail if the target exists.
* If overwrite an existing target, use the REPLACE_EXISTING option.
* If copy all file attributes, use the COPY _ATTRIBUTES option.

Files.copy(fromPath, toPath,

I

* Use the ATOMIC MOVE option to specify that a move should
be atomic:

Files.move(fromPath, toPath,

Uu10M12004-00P Dr. Helei Cui 48

o) NORTHWESTERN POLYTECHNICAL UNIVERSITY

9.4.4 Copying, Moving, and Deletingﬁiles

e Copy an input stream to a Path:

Files.copy(inputStream, toPath);

* Copy a Path to an output stream:

Files.copy(fromPath, outputStream);

* To delete a file, call:
Files.delete(path);

* This method throws an exception if the file doesn’t exist.

boolean deleted = Files.deleteIfExists(path);

* The deletion methods can also be used to remove an empty
directory.

Uu10M12004-00P Dr. Helei Cui 49

@) ¥ ltziHNY
1‘:&;;,{5 NORTHWESTERN POLYTECHNICAL UNIVERSITY

9.4.5 Getting File Information

* The following static methods return a boolean value to
check a property of a path:

e exists

e isHidden

« isReadable, isWritable, isExecutable
 isRegularFile, isDirectory, isSymbolicLink

* The size method returns the number of bytes in a file.

long fileSize = Files.size(path);

* The getOwner method returns the owner of the file, as an
instance of java.nio.file.attribute.UserPrincipal.

Uu10M12004-00P Dr. Helei Cui 50

@) Fhtzixs
;)"5 NORTHWESTERN POLYTECHNICAL UNIVERSITY

o

7

9.4.5 Getting File Information

 The basic file attributes are:

 The times at which the file was created, last accessed, and last
modified, as instances of the class java.nio.file.attribute.FileTime.

 Whether the file is a regular file, a directory, a symbolic link, or
none of these.

* The file size.

* The file key—an object of some class, specific to the file system,
that may or may not uniquely identify a file.

* To get these attributes, call:

BasicFileAttributes attributes = Files.readAttributes(path,

BasicFileAttributes.class);

* You can instead get an instance of PosixFileAttributes:

PosixFileAttributes attributes = Files.readAttributes(path,

PosixFileAttributes.class);

Uu10M12004-00P Dr. Helei Cui 51

g /A J [. > T
5) NORTHWESTERN POLYTECHNICAL UNIVERSITY

o

3%

9.4.6 Visiting Directory Entries

 The static Files.list method returns a Stream<Path>
that reads the entries of a directory.

* Since reading a directory involves a system resource that
needs to be closed, you should use a try block:

try (Stream<Path> entries = Files.list(pathToDirectory)) {

¥

* Use the Files.walk method to process all descendants
of a directory.

try (Stream<Path> entries = Files.walk(pathToRoot)) {
// Contains all descendants, visited in depth-first order

¥

Uu10M12004-00P Dr. Helei Cui 52

9.4.6 Visiting Directory Entries

* A sample traversal of the unzipped src.zip tree.

java

java/nio
java/nio/DirectCharBuffery. java
java/nio/ByteBufferAsShortBufferRL. java
java/nio/MappedByteBuffer.java

java/nio/ByteBufferAsDoubleBufferB. java

java/nio/charset
java/nio/charset/CoderMalfunctionError.java
java/nio/charset/CharsetDecoder. java
java/nio/charset/UnsupportedCharsetException. java
java/nio/charset/spi
java/nio/charset/spi/CharsetProvider. java

 Whenever the traversal yields a directory, it is entered
before continuing with its siblings.

Uu10M12004-00P Dr. Helei Cui 53

. v T
(TECHNICAL UNIVE

9.4.6 Visiting Directory Entries

* You can limit the depth of the tree that you want to visit by
calling Files.walk(pathToRoot, depth).

e Uses the Files.walk method to copy one directory to another:

Files.walk(source).forEach(p -> {
try {
Path g = target.resolve(source.relativize(p));
if (Files.isDirectory(p))
Files.createDirectory(q);
else
Files.copy(p, q);
} catch (IOException ex) {
throw new UncheckedIOException(ex);

}

e Cannot easily use the Files.walk method to delete a tree of
directories.

* Asyou need to delete the children before deleting the parent.

Uu10M12004-00P Dr. Helei Cui 54

) Z44 ¥
g /A Y [. v T
izt NORTHWESTERN POLYTECHNICAL UNIVERSITY

o 3

9.4.7 Using Directory Streams

* |f you need more fine-grained control over the traversal
process, use the Files.newDirectoryStream object.

try (DirectoryStream<Path> entries = Files.newDirectoryStream(dir)) {
for (Path entry : entries)

Process entries

* The try-with-resources block ensures that the directory
stream is properly closed.

* There is no specific order in which the directory entries are
visited.

* You can filter the files with a glob pattern:

try (DirectoryStream<Path> entries = Files.newDirectoryStream(dir, ""))

Uu10M12004-00P Dr. Helei Cui 55

NORTHWESTERN POLYTECHNICAL UNIVERSITY

&

9.4.7 Using Directory Streams

Table 2.4 Glob Patterns

Pattern Description Example

¥ Matches zero or more characters *.java matches all Java files in the
of a path component. current directory.

Xk Matches zero or more characters, ** java matches all Java files in
crossing directory boundaries. any subdirectory.

? Matches one character. ?7?77.java matches all
four-character (not counting the
extension) Java files.

[. . .] Matches a set of characters. You Test[0-9A-F].java matches Testx.java,
can use hyphens [0-9] and where x is one hexadecimal digit.
negation [!0-9].

{. ..} Matches alternatives, separated *.{java,class} matches all Java and
by commas. class files.

\ Escapes any of the above as well ~ *** matches all files with a * in

as \.

their name.

Uu10M12004-00P

Dr. Helei Cui

56

.‘:0;‘;{),% NORTHWESTERN POLYTECHNICAL UNIVERSITY

9.4.7 Using Directory Streams

* If you want to visit all descendants of a directory, call the
walkFileTree method instead and supply an object of
type FileVisitor. That object gets notified:

 When afile is encountered: FileVisitResult visitFile(T
path, BasicFileAttributes attrs)

» Before a directory is processed: FileVisitResult
preVisitDirectory(T dir, IOException ex)

« After a directory is processed: FileVisitResult
postVisitDirectory(T dir, IOException ex)

 When an error occurred trying to visit a file or directory, such as
trying to open a directory without the necessary permissions:
FileVisitResult visitFileFailed(T path,
I0OException ex)

U10M12004-00P Dr. Helei Cui 57

@) T2ty
.‘:6;;)‘%' NORTHWESTERN POLYTECHNICAL UNIVERSITY

9.4.7 Using Directory Streams

* In each case, you can specify whether you want to:
* Continue visiting the next file: FileVisitResult.CONTINUE

* Continue the walk, but without visiting the entries in this
directory: FileVisitResult.SKIP_ SUBTREE

e Continue the walk, but without visiting the siblings of this file:
FileVisitResult.SKIP_SIBLINGS

* Terminate the walk: FileVisitResult.TERMINATE

* If any of the methods throws an exception, the walk is also
terminated, and that exception is thrown from the
walkFileTree method.

* A convenience class SimpleFileVisitor implements
the FileVisitor interface.

U10M12004-00P Dr. Helei Cui 58

9.4.7 Using Directory Streams

* Example: print out all subdirectories of a given directory:

Files.walkFileTree(Paths.get("/"), new SimpleFileVisitor<Path>() {
public FileVisitResult (Path path,
BasicFileAttributes attrs) throws IOException{

System.out.println(path);
return FileVisitResult.CONTINUE;

}

public FileVisitResult (Path dir, IOException exc){
return FileVisitResult.CONTINUE;

}
public FileVisitResult (Path path, IOException exc)

throws IOException{
return FileVisitResult.SKIP_SUBTREE;

* Override postVisitDirectory and visitFileFailed.

* The attributes of the path are passed as a parameter to the
preVisitDirectory and visitFile methods.

Uu10M12004-00P Dr. Helei Cui 59

9.4.7 Using Directory Streams

* The FileVisitor interface are useful if you need to do
some work when entering or leaving a directory.

// Delete the directory tree starting at root
Files.walkFileTree(root, new SimpleFileVisitor<Path>() {
public FileVisitResult (Path file, BasicFileAttributes attrs)
throws IOException {
Files.delete(file);
return FileVisitResult.CONTINUE;

¥

public FileVisitResult (Path dir, IOException e)
throws IOException {
if (e != null) throw e;
Files.delete(dir);
return FileVisitResult.CONTINUE;

Uu10M12004-00P Dr. Helei Cui 60

9.4.8 ZIP File Systems

The Paths class looks up paths in the default file system -
the files on the user’s local disk.

If zipname is the name of a ZIP file, then the call:

FileSystem fs = FileSystems.newFileSystem(Paths.get(

Copy a file out of that archive if you know its name:

Files.copy(fs.getPath(sourceName), targetPath);

To list all files in a ZIP archive, walk the file tree:

FileSystem fs = FileSystems.newFileSystem(Paths.get(zipname), null);
Files.walkFileTree(fs.getPath("/"), new SimpleFileVisitor<Path>(){
public FileVisitResult visitFile(Path file, BasicFileAttributes
attrs) throws IOException{

System.out.println(file);
return FileVisitResult.CONTINUE;

Uu10M12004-00P Dr. Helei Cui 61

@) Thzird
Recap

ﬁ

* 9.11/0 Streams

* 9.2 Reading and Writing Binary Data
* 9.3 Object I/O Streams and Serialization
* 9.4 Working with Files

Uu10M12004-00P Dr. Helei Cui 62

