
U10M12004 Object Oriented Programming @ Northwestern Polytechnical University

1

Assignment 1: A Rock-Paper-Scissors Game

Deadline: 23:59pm, April 23, 2023

In this assignment, you are required to write a simple Rock-Paper-Scissors game in

Java. This involves classes/objects, strings, functions, array of objects, and flow

control. Your tasks are divided into two parts, and you are required to complete both.

1 Basic Level: Initializing a Random Sequence of Shapes (50%)

Your first task is to write a program that can initialize a sequence of shapes, which is

used for playing the Rock-Paper-Scissors game, as introduced in the advanced level

task. The program takes two integers from the user, where the first one is the total

number of rounds, and the second one is the seed for random number generation.

Finally, it prints the entire sequence of shapes. We provide a skeleton of code in the

appendix, i.e., Shape_sample.java, and you need to complete the program.

Now to begin, a shape has two attributes: name, and value. There are 3 shapes, and

their names are: “Rock”, “Paper”, and “Scissors”. The value of a shape simply

depends on its name: a “Rock” has a value of 1, “Paper” 2, and “Scissors” 3. All the

shape names are already defined in the main() function as an array of String.

A class called Shape is provided in the skeleton code. You should add the above

attributes defined as private members. name is a string type and private members.

value is an integer type. You also need to implement these access functions and the

default constructor in order to complete the class definition of Shape.

To initialize a random sequence of shapes, you need to implement one function. A

sequence is simply an array of Shape objects as you can see in public static void

main(String[] args). initSequence(shapeSeq, shapeName, num, seed)

is the function to initialize the sequence of shapes, where the integer value num

indicates the number of shapes in this sequence, and the integer value seed is used

for random number generation. When you create each shape, you should randomly

select its value from 1 to 3, and set its name according to the value as mentioned

before.

You also need to complete a help function called printSequence which simply

takes the sequence and the current number of shapes, and prints each Shape object

sequentially. This is called in the main() function to check the output of your code.

A sample run of the program with 20 as the number of shapes and 11 as the seed is

shown below in Figure 1.

U10M12004 Object Oriented Programming @ Northwestern Polytechnical University

2

Figure 1: A run of the basic level program with 20 as the num and 11 as the seed.

What you need to do: Based on Shape_sample.java, complete the class

definition of Shape. Do not add/remove attributes or member functions. Finish the

implementation of the default constructor and access functions. Finish the

implementation of the initSequence function and the printSequence function.

Complete the main() function based on the sample output shown in Figure 1.

What you need to submit: Submit the completed source file.

2 Advanced Level: Playing the Rock-Paper-Scissors Game

(50%)

Your next task is to extend your program in the basic level, so it can play the

Rock-Paper-Scissors game with you as the only player.

The game is as follows. At first, the program asks the user the seed for random

number generation. It initializes a random sequence of shapes, just like the basic level.

Note that you are not required to input the number of shapes, and the number is fixed

at 20 now. Then the game starts. Initially, you have 50 dollars. In each round, the

program asks you to enter an integer that indicates a shape you will choose, where 1

stands for “Rock”, 2 for “Paper”, and 3 for “Scissors”. Here we would just assume

that the input integer is 1 or 2 or 3, for simplicity. Then the program will deal one

hand to you by drawing a shape in order from the sequence of shapes initialized by

the seed, and showing it to you. The game continues until one of these conditions is

met: (1) Your balance becomes 0. Then the game ends automatically since you are

U10M12004 Object Oriented Programming @ Northwestern Polytechnical University

3

broke. (2) You choose to leave the game with a positive balance. You can do this by

entering “-1” as your input, and the game will end, and your balance will be shown.

Note that you must play at least three hands before you can leave the game. (3) The

entire sequence of 20 shapes is drawn. The game automatically ends, and your

balance is shown as well.

The rules of comparison between shapes are simple: rock beats scissors, paper beats

rock, and scissors beats paper. If you win, your balance will increase by 50 dollars. If

you lose, it will decrease by 50 dollars. If the program and you perform the same

shape, your balance will not be changed.

Some sample runs of the game are shown below. Note your program output should

be EXACTLY the same as the sample output below, using the same seed, if you

are using jdk.17.0.6.

Run 1: Figure 2 shows a run with 11 as the seed. We lose the game after 2 hand. The

result of your game is shown right after a hand is dealt to you.

Figure 2: A run of the advanced level Rock-Paper-Scissors program with 11 as the seed.

Run 2: Figure 3 shows a run with 11 as the seed. We wanted to quit at the third hand,

but the system does not allow that. We can quit after playing at least 3 hands.

Figure 3: A run of the advanced level Rock-Paper-Scissors program with 11 as the seed.

U10M12004 Object Oriented Programming @ Northwestern Polytechnical University

4

Run 3: Figure 4 shows a run with 11 as the seed. We played five hands and chose to

quit with 150 dollars.

Figure 4: A run of the advanced level Rock-Paper-Scissors program with 11 as the seed.

What you need to do: Based on your solution of the basic level task, implement the

Rock-Paper-Scissors game as specified above. Do not remove attributes or member

functions of Shape, or initSeuqence or other access functions. You may add new

member functions to Shape and new non-member functions to the program. Again,

your output must be EXACTLY the same as the above figures if you are using

jdk17.0.6. You are encouraged to try different seeds and play different bets to test

your own solution (it’s a game anyway :)).

What you need to submit: Submit the completed source file.

Submission guideline: You should submit two java files (or a ZIP file if your email

server does not support attaching code files) via email to Miss Man Li

(liman@mail.nwpu.edu.cn) before the deadline. Make sure that your code is

runnable with Java 17.

mailto:liman@mail.nwpu.edu.cn

U10M12004 Object Oriented Programming @ Northwestern Polytechnical University

5

Appendix
// Shape_sample.java

import java.util.Random;

import java.util.Scanner;

public class Shape {

 public static final int MAX_NUM_OF_SHAPES = 60;

 // TODO: Complete the class definition of Shape

 // TODO: Complete the code that initializes a random sequence of shapes

 // You need to set its name and value for each shape:

 // Rock = 1, Paper = 2, Scissors = 3

 public static void initSequence(Shape[] shapeSeq, String[] shapeName, int

num, int seed) {

 Random random = new Random(seed);

 }

 // TODO: Complete the code that prints the sequence of shapes sequentially

 public static void printSequence(Shape[] shapeSeq, int num) {

 }

 public static void main(String[] args) {

 Scanner sc = new Scanner(System.in);

 Shape[] shapeSeq = new Shape[MAX_NUM_OF_SHAPES];

 String[] shapeName = { "Rock", "Paper", "Scissors" };

 int num = 0;

 // read the num from the console

 System.out.println("Enter the num of shapes in the sequence (1 to 60):

");

 num = sc.nextInt();

 // TODO: Check the range of num

 int seed = 0;

 System.out.println("Enter the seed for random number generation: ");

 seed = sc.nextInt();

 initSequence(shapeSeq, shapeName, num, seed);

 printSequence(shapeSeq, num);

 }

}

